中华人民共和国生态环境部制

建设单位责任声明 限公司 (统一)

编制验证

編制单位责任声明 保科技有限 声明:

NE 13 H

· 我们真实性。 容的真实性、客观性、全面性、

打印编号: 1732760487000 项目编号 建设项目名称 建设项目类别 环境影响评价文件类 建设单位情况 名称 (盖章) 广州博艺塑料制品有限公司 一社会信用代码 91440101MA5CJPXGX4 20017-法定代表人(签章) 主要负责人(签字) 直接负责的主管人员(签字) 二、编制单位情况 1000 K 广州瑞华环保科,有限公司 单位名称 (盖章) 统一社会信用代码 D 三、编制人员情况 2 主要编制人员 姓名 1 编制主持人 格证书管理号 信用编号 签字

本证书由中华人民共和央 和社会保障部、生态环境部批准恢复, 表明持证人通过国家统一组织的考查。 取得环境影响评价工程师职业资格。对 NAME OF THE PARTY Environmental Impact Assessment Engineer 本证书由中华人民共和国人力资源 400177-

	_ 该参保人在广东省参加	广东省社会保险个人参保证	的 明
	以多床入住/ <u></u>	PLEASURE IN THE STATE OF THE ST	
		参保险种情况	11/23
	参保起此时间	单位	参保险和 养老
	202110 - 202412	广州市:广州瑞华环保科技有限公司	3 3
	截止	2025-01-10 15:03 ,该参保人累计月数合计	等的激费 实际缴费 实际缴费 3个月,缓 3个户,缓 缴0个月 物0个月
ARIVA DI	备注: 本《参保证明》标注的 行业阶段性实施缓缴企。 保障厅广东省发展和改 会保险费政策实施范围 ² 社保费单位缴费部分。	"缓缴"是指:《转发人力资源社会保障部划公厅业社会保险费政策的通知》(粤人社规(2022〕11 过基委员会 广东省财政厅 国家税务总局广东省税等政策的通知》(粤人社规〔2022〕15号)等文件	网办业务专用章 国家经务总局办公厅关于特困号)、《广苏首人力资源和社会务局关于实施扩大阶段性缓缴社实施范围内的企业申请缓缴三项
	证明机构名称(证明专	等政策的通知》(傳入社規〔2022〕15号)等文件	2025-01-10 15:03
			NC.
			ALC: NO.
	14-X(1)	A.Y.	
ARIAN STATE	7	ARILY TO	

ADOO! IT. WITH ADOO! IT. WITH THE WAR WITH A THE WAR AND THE WAR A

		广东省社会保险个人参保证	上 202501149448429997 正明
	该参保人在广东省参加社	会保险情况如下:	
		参保险种情况	1/2
	参 供 这 中N间	单位	参保险和 养老 失业
	202406 - 202412	广州市:广州瑞华环保科技有限公司	7
Y	截止	2025-01-14 10:33 ,该参保人累计月数合计	7个月,缓 物个月 缴0个升 物0个月
ARIV .	备注: 本《参保证明》标注的" 行业阶段性实施缓缴企业 保障厅 广东省发展和改造 会保险费政策实施范围等 社保费单位缴费部分。	缓缴"是指:《转发人力资源社会保险部分公社会保险费政策的通知》(粤人社规(2022)] 社会保险费政策的通知》(粤人社规(2022)] 草委员会 广东省财政厅 国家税务总局 东省 政策的通知》(粤人社规〔2022〕15号)等文化	网办业务专用章 于国家设备总局办义厅关于特困 11号)、分别省人力资源和社会 税务局关于实施扩大阶段性缓缴社 件实施范围内的企业申请缓缴三项
	(本) 所以	用章) 证明时间	2025-01-14 10:33
	CONTRACTOR OF THE PARTY OF THE		
-118	表表別加		A THE
A STATE OF THE STA	y	ARIV TO	>
U.		HIJIII KA	

Market Allen 1000 - Til 广州市番禺区汇景大道392号101铺 2018年04月17日 至 长期 2010日本 日本の日本 2018年04月17日 营业期限 注册资本 成立日期 GHALL Mysh #00 有限责任公司(自然人独资 经营范围

\rightarrow	\neg \times
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Н	

	,000		
	目录		
	一、建设项目基本情况	1	A.
	二、建设项目工程分析	23	
	三、区域环境质量现状、环境保护目标及评价标准	43	
	四、 主要环境影响和保护措施	52	
	五、环境保护措施监督检查清单	97	
	六、结论	99	
	附表:建设项目污染物排放量汇总表	100	
	附图 1/地理位置图	102	
	附图 2 建设项目四至图	103	
Y	紧 图 3 建设项目平面布置图	106	
	附图 4 环境空气功能区区划图	107	
No.	附图 5 地表水环境功能区划图	108	•
*	附图 6 地下水环境功能区划图	109	4.4
•	附图 7 番禺区声环境功能区区划图	110	KIN
	附图 8 大气现状监测布点图		. L
	附图 9 项目敏感点示意图《比例尺: 1:5160)	112	•
	附图 10 项目周围及现状实景图	014	
	附图 11 本项目与广州市生态环境管控区位置关系图	115	
	附图 12 本项目与广州市大气环境管控区位置关系图	116	
		117	
	附图 14 广东省"三线一单"应用平台截图(陆域环境重点管控单元)		
· th	M图 15 广东省"三线一单"应用平台截图(生态空间 一般 管控区)		
XXV"	附图 16 广东省"三线一单"应用平台截图(水环境、设管控区)		
	附图 17 广东省"三线一单"应用平台截图(大气环境高排放重点管控区)		
	附图 18 广东省"三线一单"应用平台截图《高污染燃料禁燃区》		
	附图 19 番禺区产业区块分布截图	123	
	I I		

一、建设项目基本情况

				-XX	
			~(KY	
			100		
	一、建设项目	基本情况 			_
	建设项目名称	广州博艺塑料制品有	1限公司年产美容材 迁建项目	14000 台、灯箱外壳 1000 个	
	项目代码	.7 -	2411-440113-04-01	-775036	F-47
	建设单位联系人		联系方式		5
 	建设地点	广州市番禺区石基镇	真桥山村金龙路 28	4号二栋 101、301、401 室	
	地理坐标	(E113° 2	5' 21.362" , N22	2° 58′ 37.889″	1
*	1	C2929 塑料零件及 其他塑料制品制造	建设项目行业类别	二十六、橡胶和塑料制品业53、塑料制品业其他(年用非溶剂型低 VOCs 含量涂料 10 吨以下的除外)	
ARIV A		☑新建(迁建) □改建 □扩建 □技术改造	建设项目	☑首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目	1
	项目审批(核准/	17/8	五年 口 (大) () () () () () () () () ()		1/2
	备案)部门(选 填)		项目审批(核准/ 备案)文号(选填)	/	
	总投资 (万元)	100	环保投资 (万元)	20	
	环保投资占比	20	施工工期		
. D	是否开工建设	☑否□是	用地 (用海) 面积 (m²)	400	
	专项评价设置 情况	无	AIV		
	规划情况	无	XXX		
1	规划环境影响	无	XY'		
		光湖影光	1		_
		* U			

评价情况	1/2
规划及规划环	N/Z,)
境影响评价符	无
合性分析	

The state of the s 表表表表现。 是一样的 是一样的

1、产业政策相符性分析

本项目属于"C2929 塑料零件及其他塑料制品制造"行业,对照《产业结构调整指导目录(2024年本)》有关规定,本项目性质、工艺和设备均不属于淘汰类和限制类,属于允许类;根据《市场准入负面清单》(2022年版),本项目不属于清单中所列类别,属于许可准入类,符合该文件要求。

2、选址合理性分析

本项目租赁房地产权属人蔡智浩位于广州市番禺区石基镇金龙路桥山村段8号的房地产,该房地产于2010年8月12日登记(粤房地权证穗字第0210106675号,详见附件2),规划用途为工业。2015年权利入蔡智浩取得不动产权证(粤【2015】广州市不动产权第07204854号、详见附件2)。根据广州市工业产业区块分布图(附图19)可知,本项目所在位置位于工业产业区块一级控制线内,因此项目选址合理。

3、与《广州市城市环境总体规划(2022—2035年)》相符性分析

根据《广州市城市环境总体规划(2022—2035 年)》(穗府〔2024〕9 号),番禺区为广州市的南部滨海生态保育调节区,主导环境服务功能是维护珠江口滨海湿地水网生态平衡,培育高品质生态宜居环境。总体战略为高效科学、绿色可持续发展。本项目为 C2929 塑料零件及其他塑料制品制造,污染物产生量较少,环境影响轻微。

①生态环境空间管控

将生态功能重要区、生态环境敏感脆弱区,以及其他具有一定生态功能或生态价值需要加强保护的区域,纳入生态环境空间管控区。管控区内生态保护红线以外区域实施有条件开发,严格控制新建各类工业企业或扩大现有工业开发的规模和面积,避免集中连片城镇开发建设、控制围垦、采收、堤岸工程、景点建设等对河流、湖库、岛屿滨岸自然湿地的破坏,加强地质遗迹保护。区内建设大规模废水排放项目、排放含有毒有害物质的废水项目严格开展环境影响评价,工业废水未经许可不得向该区域排放。

本项目选址位于广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、

401室,根据附图11,本项目不在生态保护红线区和生态环境空间管控区内。

②大气环境空间管控

在全市范围内划分三类大气环境管控区,包括环境空气功能区一类区、 大气污染物重点控排区和大气污染物增量严控区。本项目选址位于广州市番 禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室,根据附图 12,本项 目选址位于大气污染物重点控排区。

③水环境空间管控

ARIVA NA

在全市范围内划分四类水环境管控区,包括饮用水水源保护管控区、重要水源涵养管控区、涉水生物多样性保护管控区、水污染治理及风险防范重点区。本项目选址位于广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室,根据附图 13,本项目所在地和纳污水体不在水环境空间管控区。

经分析,本项目与《广州市城市环境总体规划(2022—2035 年)》是相符的。

4、与《广州市番禺区生态环境保护"十四五"规划》相符性分析

《广州市番禺区生态环境保护"十四五"规划》指出: "贯彻落实能源消费总量和强度"双控"目标责任制,严格控制新上高能耗、高污染项目。严格建设项目环境准入,限制污染重、能耗高、工艺落后的项目进驻,严格限值产业附加值低、污染物排放强度高的橡胶和塑料制品、包装印刷、工业涂装等项目。在清洁生产、生态环境保护、资源综合利用与废弃物资源化等方面,积极开发、引进各类新技术、新工艺、新产品,推广示范适用技术。提升固体废物资源化水平。深化工业固体废物资源化利用。提升固体废物处理处置能力。保障工业固体废物安全处置。"

本项目为 C2929 塑料零件及其他塑料制品制造,不属于高耗能、高污染项目。本项目将喷漆后打磨粉尘、ABS 板材开料、雕刻、打磨粉尘和中纤板开料、打磨粉尘均通过布袋除尘器收集处理后排放。激光雕刻、吸塑产生的污染物经二级活性炭吸附装置处理后于 20 米高排放。喷漆产生的有机废气和颗粒物经水帘柜预处理后,再和调漆、烘干、晾干、拼接/组装产生的有机

废气进入"过滤棉+二级活性炭吸附装置"处理后于20米高排放。通过采取以上防治措施,可有效降低污染物排放总量及浓度,颗粒物和有机废气等污染物可达标排放。因此本项目符合文件要求。

5、与《广州市番禺区人民政府关于印发番禺区生态文明建设规划(2021—2035年)的通知》(番府〔2021〕118号)相符性分析

根据《广州市番禺区人民政府关于印发番禺区生态文明建设规划 (2021—2035 年)的通知》(番府(2021)118 号)要求:加强挥发性有机物 污染控制,完善环境监督管理,强化环境风险防控与应急。准重源头控制, 推进低挥发性有机物含量产品源头替代。建立健全挥发性有机物管控清单及 更新机制,实施挥发性有机物排放企业分级管控,全面深化涉挥发性有机物 排放企业的深度治理。

ARIVA NA

本项目将喷漆后打磨粉尘、ABS 板材开料、雕刻、打磨粉尘和中纤板开料、打磨粉尘均通过布袋除尘器收集处理后排放。激光雕刻、吸塑产生的污染物经二级活性炭吸附装置处理后于 20 米高排放。喷漆产生的有机废气和颗粒物经水帘柜预处理后、再和调漆、烘干、晾干、拼接/组装产生的有机废气进入"过滤棉+二级活性炭吸附装置"处理后于 20 米高排放。通过采取以上防治措施,可有效降低污染物排放总量及浓度,颗粒物和有机废气等污染物可达标排放。因此本项目符合文件要求。

6、与《广东省"三线一单"生态环境分区管控方案》相符性分析

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控 方案的通知》(粤府〔2020〕71号)要求:为适应以改善环境质量为核心的 环境管理要求,切实加强环境影响评价(以下简称环评)管理,落实"生态 保护红线、环境质量底线、资源利用上线和环境准入负面清单"("三线一 单")约束,建立项目环评审批与规划环评。现有项目环境管理、区域环境 质量联动机制("三挂钩"),更好地发挥环评制度从源头防范环境污染和 生态破坏的作用,加快推进改善环境质量。

		1	表 1-1 项目与广东省"三线一单"的相符性分析一览表	1
		内容	相符性分析	相符性
			本项目不在《广州市城市环境总体规划(2022—2035年)》(穗	
		生态保护	府(2024)9号)生态保护红线范围内(附图11);根据《广	4D 55
		红线	东省"三线一单"生态环境分区管控方案》(粤府〔2020〕71 号),本项目所在地属于重点管控单元,不属于生态优先保护	相符
			5), 本项目所任地属了重点官程单元, 不属了生态优先保护 区、水环境优先保护区、大气环境优先保护区等优先保护单元。	
			根据《广东省"三线一单"生态环境分区管控方案》(粤府(2020)	
			71号人,全省水环境质量持续改善,国考、省考断面优良水质	
			比例稳步提升,全面消除劣V类水体。大气环境质量继续领跑。	
			先行, PM _{2.5} 年均浓度率先达到世界卫生组织过渡期二阶段目标	
		环境质量	值(25 微克/立方米), 臭氧污染得到有效遏制。土壤环境质量	100 666
		底线	稳中向好,土壤环境风险得到管控,近岸海域水体质量稳步提	相符
		W/L	升。	
	7.7	1	根据《2023年广州市生态环境状况公报》,项目所在区域为环	
/			境空气质量不达标区。根据地表水现状监测数据,说明市桥水	
	 		道水质现状良好。	
70,				
AV			 强化节约集约利用,持续提升资源能源利用效率,水资源、土	
36			地资源、岸线资源、能源消耗等达到或优于国家下达的总量和	
(A)		资源利用	强度控制目标。	to the
		上线	本项目不属于高耗能,污染资源型企业,运营过程中消耗一定	相符
			量的电源、水资源等,资源消耗相对区域利用总量较少,项目	
			的建设不会突破资源利用上线。	
			, 1 <u>X</u> ,	l
			根据《本省"三线一单"生态环境分区管控方案》(粤府(2020)	0
			71号,从区域布局管控、能源资源利用、污染物排放管控和	100
			环境风险防控等方面明确准入要求,建立"1+3+N"三级生态环	UX -
		环境准入	境准入清单体系。"1"为全省总体管控要求,"3"为"一核) 10 66
		负面清单	一带一区"区域管控要求,"N"为 1912 个陆域环境管护单元	相符
			和 471 个海域环境管控单元的管控要求。	
	70		本项目不属于区域布局管控、能源资源利用、污染物排放管控	
	X-X		和环境风险防控等方面明确禁止准入项目。	

7、与《广州市"三线一单"生态环境分区管控方案》相符性分析

根据广东省"三线一单"数据管理及应用于台(截图详见附图 14~18), 本项目位于"番禺区石碁镇-大龙街·南村镇-东环街-市桥街-沙湾街-沙头街重点管控单元(ZH44011320006)"。属于"市桥水道广州市市桥街道东兴社区

等控制单元(YS4401133210005)"水环境、般管控区、"广州市番禺区大气环 境高排放重点管控区 1(YS4401132310001)"大气环境高排放重点管控区、"番 禺区高污染燃料禁燃区(YS4401132540001)"高污染燃料禁燃区,其管控维 度及管控要求见下表。

项目与番里区化龙镇重占管控单元要求相符件分析

「			表 1-2	项目与番禺区化龙镇重点管控	<u>望</u> 单元要求相符性分析一览表	
番禺区石碁镇-大龙街-南村 镇-东环街-市桥街沙湾街-沙头街重点管控单元 管控要求 1-1. 【产业/限制类】现有不 符合产业规划、主导产业、 效益低、能耗高、产业附加 值较低的产业和落后生产能 力逐步退出或关停。 1-2. 【大气/限制类】、水管直 簡倒模生产。 1-2. 【大气/限制类】、水管直 饰倒模生产。 最远离居民华区和环境空 气功能区/类区。 一、大气/限制类】大气环境高排放重 意管羟区。 一、大气/限制类】大气环境高排放重 点管投区。 一、大气/服制类】大气环境高排放重点管控区内, 设产格限制新建储油库项 目、产生和排放有毒有害大 污染物的工业建设两利型油 最、涂料、消洗剂、胶黏剂等原辅材料的项目。 日、产生和排放重点管控区内, 及使用高挥发性溶利型油 最、涂料、消洗剂、胶黏剂等原辅材料的项目。 1-4. 【大气/鼓励引导类】、大 气环境高排放重点管控区内,应强化达标监管,引导工业项目落地集聚发展,有 产推进区域内行业企业提标。 改造。 1-5. 【大气/限制类】、不				环境管控单元名称	管控单元分类	d
管控要求 相符性分析 相符性			N		Also Allo	7
情控要求			ZH44011320006		重点管控单元	
符合产业规划、主导产业、效益低、能耗高、产业附加值较低的产业和落后生产能力逐步退出或关停。 1-2. 【大气/限制类】软管首饰倒模生产集中切了点应尽量远离居民体多区和环境空气功能区/类区。 1-3、 人大气限制类】大气环境高排放重点管控区。 1-3、 人大气限制类】大气环境。排放,避避产生的污染物经工级人的心产格限制新建储油库项目、产生和排放有毒有害大气污染物的工业建设项目以及使用高挥发性溶剂型油墨、涂料、清洗剂、胶黏剂等原辅材料的项目。 1-4. 【大气/鼓励引导类】大气环境高排放重点管控区内,应强化达标监管,引导工业项目落地集聚发展,有序推进区域内行业企业提标改造。 1-5. 【大气/限制类》大环		/ /	管控维度	管控要求	相符性分析	符
气污染物的工业建设项目以及使用高挥发性溶剂型油墨、涂料、清洗剂、胶黏剂等原辅材料的项目。 1-4. 【大气/鼓励引导类】大气环境高排放重点管控区内,应强化达标监管,引导工业项目落地集聚发展,有序推进区域内行业企业提标改造。 1-5. 【大气/限制类】大气环	ARIVA IN			符合产业规划、主导产业、效益低、能耗高、产业附加值较低的产业和落后生产能力逐步退出或关停。 1-2. 【大气/限制类】珠宝首饰倒模生产集中加工点应尽量远离居民住宅区和环境空气功能区分类区。 1-3. 【大气/限制类】大气环境受体敏感重点管控区内,	项目属于番禺区石基镇重点管控单元,属于大气环境高排放重点管控区。 本项目将喷漆后打磨粉尘、ABS板材开料、雕刻、打磨粉尘和中纤板开料、打磨粉尘均通过布袋除尘器收集处理后排放。激光雕	
境布局敏感重点管控区内,		***	区域布局管控	气污染物的工业建设项目以及使用高挥发性溶剂型油墨、涂料、清洗剂、胶黏剂等原辅材料的项目。 1-4. 【大气/鼓励引导类】大气环境高排放重点管控区内,应强化达标监管,引导工业项目落地集聚发展,有序推进区域内行业企业提标改造。 1-5. 【大气/限制类】大气环	高排放。喷漆产生的有机废气和颗粒物经水帘柜预处理后,再和调漆、烘干、晾干,拼接/组装产生的有机废气进入"过滤棉+二级活性炭吸附装置"处理后于20米高排放。因此本项目产生的废气不会对周围大气环境产生影响。	为 符
				7		

力推进低 VOCs 含量 與海科 科			应严格限制新建使用高挥发 性有机物原辅材料项目, 大		
放控制,实施 9Cs 重点企业分级管控。 1-6. 【士壤·禁止类】禁止在 居民 6元 经营 9位周边新建、 按建、扩建可能造成上壤污染的建设项目。 2-1. 【水资源/综合类】全面 开展市水型社会建设。推进 节水产品推广普及、限制高耗水服务业用水、加快节水技术改进;推广建筑中水应 相见 40 电平息市政供电。水、 2-2. 【岸线/综合类】严格水 城岸线用途管制,土地开发利用应按照有关法律法规和技术标准要求。曾是 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			力推进低 VOCs 含量原辅材		
业分级管控。 1-6、【士壤·禁止类】禁止在 居民 和学校、医院、疗养 经院等单位周边新建、 教建 , 对建可能 造成土壤污 杂的建设项目。 2-1.【水资源/综合类】全面 开展节水型社会建设。 推进 节水产品推广 "普及,限制高 耗水服务 业用水 加快节水 技术改进,推广建筑中水应 用。 2-2.【岸线/综合类】严格水 域岸线阻 強腐 前, 土地开发 利用应按照有 美法律法规和 技术标准要求。留定 "被说" 湖泊的管理和保护证制,非法挤占的应则明息出。 3-1.【水综合类】强化工业					
1-6.【大块、禁止类】禁止在 居民 和学校、医院、疗养 免养老院等单位周边新建、 效理、扩建可能造成土壤污 染的建设项目。 2-1.【水资源综合类】全面 开展节水型社会建设、推进 节水产品推广普及,限制高 耗水服务业用水;加快节水 技术改进,推广建筑中水应 用。2-2.【岸线/综合类】严格水 城岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足有定。 湖泊的管理和保护逻辑,非 法挤占的应则提出。 3-1.【水资合类】强化工业 污染此始、推进城乡生活污 资治解、推进农业面源污染 、产者的锋污水处理疾, 是对,完善的锋污水处理疾, 是不可,完善的锋污水处理传, 保证污水厂出水稳定达标排 放,完善的锋污水处理疾, 保证污水厂出水稳定达标排 放,完善的经济水处理, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧村田城改造按照排水系统制 污分流建设。3-3.【大气/ 综合类】大气环境敏感点周 为企业加强管控工业无规 为,使用等企业产生的有机废气和 高力企业加强管控工业无规 为。其一、"以供的 发生的有机废气,再和 动企业的发生,使用。 一次等。其一、"以供的 一次等。"是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个			112		
居民、和学校、医院、疗养 数建、扩建可能造成土壤污染的建设项目。 2-1.【水资源/综合类】全面 开展节水型社会建设。推进节水产品推广普及,限制高 耗水服分业用水: 加快节水 技术或进; 推广建筑中水应 用。 2-2.【岸线/综合类】严格水 域岸线用验管制,土地开发利用应按照有关法律法规和 技术标准要求,留足和证、湖泊的管理和保护按别,非 法挤占的应题地是出。 3-1.【水步发】强化工业 污染贴的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 资的,推进城少生活污 发现,在一个大大大大大大大大大大大大大大大大大大大大大大、大大大大大大大大大大大大大大					
及建、扩建可能造成土壤污染的建设项目。 2-1.【水资源/综合类】全面开展节次型社会建设。推进节水产品推广普及,限制高					
改建、扩建可能造成土壤污染的建设项目。 2-1.【水资源/综合类】全面 开展市水型社会建设。根进市水产品推广普及,限制高耗水服务业用水,加快节水 技术改进;推广建筑中水应 用。 2-2.【学线/综合类】严格水 域岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足预验。 湖泊的管理和保护逻辑。非法挤占的应影场追出。 3-1.【水/综合类】强化工业污染的治,推进城乡生活污沙治源。推进农业面源污染治理,在一致遗配、在理解外形型的。是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,			~/ / '		0
2-1.【水资源/综合类】全面 开展节水型社会建设。推进 节水产品推广普及,限制高 耗水服务业用水;加快节水 技术改进,推广建筑中水应 用。 2-2.【岸线/综合类】严格水 域岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足和说。湖泊的管理和保护资调,非 法挤占的应即发出。 3-1.【水/综合类】强化工业 污染规治、推进城乡生活污 淡治寒、推进农业面源污染 治果、控制农药化肥使用量。 3-2.【水/综合类】强化工业 污染规治、推进成少生活污决处理 为理,控制农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 网,完善前锋污水处理系统, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧村旧城改造按照排水系统商 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 改企业加强管控工业无组织 废气排放,防止废气扰致 3-4.【大气/限制类】光格控 20米高排放。因此本项目产生		15		4/1	
开展节水型社会建设。推进节水产品推广普及;限制高耗水服务业用水;加快节水技术改进;推广建筑中水应用。 本项目运营期间用水来自市政用。 本项目运营期间用水来自市政用。 本项目运营期间用水来自市政度是。 水域定线用途管制,土地开发利用应按照有关法律法规和技术标准要求,图是不道。 湖泊的管理和保护逻辑,非法挤占的应服处是出。			染的建设项目。]
市水产品推广普及,限制高 耗水服务业用水;加快节水 技术改进;推广建筑中水应 用。 2-2.【岸线/综合类】严格水 域岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足和自、 湖泊的管理和保护短围,非 法挤占的应贴的是出。 3-1.【水水合类】强化工业 污染奶尚,推进城乡生活污 资。推进农业面源污染 省。 控制农药化肥使用量。 高-2.【水/综合类】强化工业 污染的治、推进城乡生活污 资。推入农产量、全人工产 污染的产品,推查者。 和方等的举污水处理。 成一型。控制农药化肥使用量。 本项目所在区域目前已完善市 政污水管网,生活污水经预处理, 尾水汇入市桥水道。 基本项目将喷漆后打磨粉尘、ABS 解、产品的链形或处共管 网、产需的锋污水处理系统, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中, 收集处理率,城镇新区和旧 村田城改造按照排水系统两 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰 第一级、烘干、晾干、拼接/组装 产生的有机废气进入"过滤棉+ 一级活性炭吸附装置"处理后于 3-4.【大气/限制类】系格控		~ KI	2-1.【水资源/综合类】全面	(EXF)	
 ・		V.10		A KAN	
技术改进;推广建筑中水应 用。 2-2.【岸线/综合类】严格水 域岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足而道、湖泊的管理和保护逻辑,非 法挤占的应限频度出。 3-1.【水寒合类】强化工业 污染防治 推进城乡生活污 沙治望。推进农业面源污染 指进农业面源污染 指建农业面源污染 指建和农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 网,完善前锋污水处理系统,保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧村旧城改造按照排水系统两 污分流建设。 3-3.【大气/综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰疾 3-4.【大气/限制类】系格控		1/1/L		1/2)	
用。 2-2.【岸线/综合类】严格水域岸线用途管制,土地开发利用应按照有关法律法规和技术标准要求,留足和道、湖泊的管理和保护逻制,非法挤占的应更更是出。 3-1.【水炒合类】强化工业污染质治,推进域乡生活污沙治理。推进农业面源污染后种。全种、生物、全种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、生物、大种、大种、大种、大种、大种、大种、大种、大种、大种、大种、大种、大种、大种、	, 77				
2-2.【岸线/综合类】严格水 域岸线用途管制,土地开发 利用应按照有关法律法规和 技术标准要求,留足和道、湖泊的管理和保护还囿,非 法挤占的应限更是出。 3-1.【水/外合类】强化工业	, XX,				4-1
域岸线用途管制,土地开发利用应按照有关法律法规和技术标准要求,留足和道、湖泊的管理和保护证制,非法挤占的应限证息出。 3-1.【水炒合类】强化工业污染质治、推进城乡生活污沙治理。推进城乡生活污沙治理。推进城乡生活污沙治理。推进城乡生活污沙治理。控制农药化肥使用量。 3-2.【水/综合类】结合排水单元改造配套建设公共管网,完善前锋污水处理系统,保证污水厂出水稳定达标排放,提高城镇生活污水集中收集处理率,城镇新区和旧村旧城改造按照排水系统两污分流建设。 3-3.【大气/综合类】大气环境敏感点周边企业加强管控工业无组织废气排放,防止废气扰和。 以"大人",以"大",以"大",以"大",以"大",以"大",以"大",以"大",以"大		能源资源利用			
利用应按照有关法律法规和技术标准要求,留足和道、湖泊的管理和保护逻围,非法挤占的应既挑起出。 3-1.【水炒合类】强化工业污染防治、推进城乡生活污冰管网,生活污水经预处理后排至前锋净水厂进一步处理,后排至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋为水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋净水厂进一步处理,后非至前锋,次汇为市桥水道。本项目将喷漆后打磨粉尘、ABS板料开料、雕刻、打磨粉尘、和中板,是高排放"喷漆"上和中坡集处理率,城镇新区和旧村田城改造按照排水系统两沟、观型产生水污染物经二级活性炭吸附装置处理后于20米高排放"喷水管和预处理后,再和源达米供干、晾干、拼接/组装产生的有机废气进入"过滤棉+一级活性炭吸附装置"处理后于20米高排放,防止废气排散,防止废气扰散,这是的有机废气进入"过滤棉+一级活性炭吸附装置"处理后于20米高排放。因此本项目产生	×			建。	19
技术标准要求,留足和道、 湖泊的管理和保护逻辑,非 法挤占的应限规想出。 3-1.【水/多合类】强化工业 污染防治。推进城乡生活污 实治理。推进农业面源污染 新理,控制农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 网,完善前锋污水处理系统, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧 村旧城改造按照排水系统雨 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰较。 3-4.【大气/限制类】系格控			L L		
湖泊的管理和保护逻辑,非 法挤占的应限处理出。 3-1.【水炒合类】强化工业					
法挤占的应限地思出。 3-1.【水烧合类】强化工业					
污染防治。推进城乡生活污 染治理。推进农业面源污染 治理,控制农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 网,完善前锋污水处理系统, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧 村旧城改造按照排水系统雨 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰长。 3-4.【大气/限制类】深格控			V. K		
及治理。推进农业面源污染 治理,控制农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 网,完善前锋污水处理系统, 保证污水厂出水稳定达标排 放,提高城镇生活污水集中 收集处理率,城镇新区和旧 村旧城改造按照排水系统雨 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰长。 3-4.【大气/限制类】严格控			· //		
海里,控制农药化肥使用量。 3-2.【水/综合类】结合排水 单元改造配套建设公共管 板材开料、雕刻、打磨粉尘和中			Y / / /		7>-
3-2.【水/综合类】结合排水 本项目将喷漆后打磨粉尘、ABS 板材开料、雕刻、打磨粉尘和中 纤板开料、打磨粉尘均通过布袋 除尘器收集处理后排放。激光雕 放,提高城镇生活污水集中 似集处理率,城镇新区和旧 村旧城改造按照排水系统雨 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰民 一级活性炭吸附装置"处理后于 3-4.【大气/限制类】严格控 20 米高排放。因此本项目产生					0
单元改造配套建设公共管网,完善前锋污水处理系统,保证污水厂出水稳定达标排放,提高城镇生活污水集中收集处理率,城镇新区和旧村旧城改造按照排水系统雨污分流建设。 3-3.【大气/综合类】大气环境敏感点周边企业加强管控工业无组织废气排放,防止废气扰衰。 20米高排放。因此本项目产生 20米高排放。因此本项目产生 20米高排放。因此本项目产生 20米高排放。因此本项目产生		15	m *		
网,完善前锋污水处理系统,保证污水厂出水稳定达标排放,提高城镇生活污水集中收集处理率,城镇新区和旧村田城改造按照排水系统雨污分流建设。 3-3.【大气/综合类】大气环境敏感点周边企业加强管控工业无组织废气排放,防止废气扰民。 3-4.【大气/限制类】严格控 50米高排放。因此本项目产生 20米高排放。因此本项目产生					
传来物排放管 保证污水厂出水稳定达标排 放,提高城镇生活污水集中收集处理率,城镇新区和旧村旧城改造按照排水系统商 高排放。喷漆产生的有机废气和		180			
放,提高城镇生活污水集中 收集处理率,城镇新区和旧村旧城改造按照排水系统雨 污分流建设。 3-3.【大气/ 综合类】大气环境敏感点周 边企业加强管控工业无组织 废气排放,防止废气扰民。 3-4.【大气/限制类】严格控 20米高排放。因此本项目产生		A Shaller Lil. VI hat-			
收集处理率,城镇新区和旧村旧城改造按照排水系统雨污分流建设。 3-3.【大气/ 高排放。喷漆产生的有机废气和颗粒物经水帘柜预处理后,再和综合类】大气环境敏感点周边企业加强管控工业无组织 产生的有机废气进入"过滤棉+ 一定气排放,防止废气扰尺。 20米高排放。因此本项目产生 20米高排放。因此本项目产生		万华物排放管		刻、吸塑产生的污染物经二级	
污分流建设。 3-3.【大气/ 颗粒物经水帘柜预处理后,再和 综合类】大气环境敏感点周	70	14.	收集处理率,城镇新区和旧	活性炭吸附装置处理后于20米	付
综合类】大气环境敏感点周 调添、烘干、晾干、拼接/组装 边企业加强管控工业无组织 产生的有机废气进入"过滤棉+ 废气排放,防止废气扰尺" 二级活性炭吸附装置"处理后于 3-4.【大气/限制类】严格控 20 米高排放。因此本项目产生	X-X		村旧城改造按照排水系统雨	高排放。喷漆产生的有机废气和	
边企业加强管控工业无组织 产生的有机废气进入"过滤棉+ 废气排放,防止废气扰尺。 二级活性炭吸附装置"处理后于 3-4.【大气/限制类】严格控 20 米高排放。因此本项目产生				// ·	
废气排放,防止废气扰尺。 二级活性炭吸附装置"处理后于 3-4.【大气/限制类】严格控 20 米高排放。因此本项目产生	157		4		
3-4.【大气/限制类】严格控 20 米高排放。因此本项目产生					
1970 X H 1970 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			11.00/11.00 H 11.00 H	时次(十五八八百八八十九)	

备制造业、金属制品业等产业使用高挥发性有机溶剂,产生含挥发性有机物废气的生产和服务活动,应当在密闭空间或者设备中进行,并按照规定安装、使用污染防治设施;无法密闭的,应当采取措施减少废气排放。

生影响

环境风险防控

全事故应急体系,落实有效的事故风险防范和应急措施,有效防范污染事故发生。 4-2.【风险/综合类】加强火烧岗垃圾填埋场环境风险防范和应急工作,制定完善的环境风险应急预案,落实各项环境风险防范和应急措施,提高环境事故应急处理能力,保障环境安全。 4-3.【土壤/综合类】建设用

地污染风险管控区内企业应 加强用地土壤和地下水环境 保护监督管理、防治用地土

壤和地下水污染。

本项目的危险物质数量较少,泄漏、火灾、爆炸等事故发生概率较低,环境风险潜势为 I,在落实防范措施后,项目生产过程的环境风险总体可控。

相

符

本项目产生的污染物不会污染 土壤、地下水。

综上,本项目与《广州市"三线一单"生态环境分区管控方案》相符。

8、与《广州市人民政府关于印发广州市环境空气质量达标规划 (2016-2025年)的通知》相符性分析

根据《广州市环境空气质量达标规划(2016-2025 年)》《广州市空气质量主要污染物指标中二氧化氮、细颗粒物年均浓度存在不同程度超标,属于未达到《环境空气质量标准(GB3095-2012)》的城市,为实现空气质量限期达标的战略目标,提出了一系列近期大气污染治理措施,针对排放TVOC的企业主要治理措施有:源头预防、过程控制《末端治理等。

本项目将 ABS 板材开料、雕刻、扩磨工序和中纤板开料、打磨工序产生的颗粒物均通过布袋除尘器收集处理后排放。激光雕刻、吸塑产生的污染物

生的有机废气和颗粒物经水帘柜预处理后,再经过"过滤棉+二级活性炭吸 附装置"处理后于20米高排放。通过采取以上防治措施,可有效降低污染物 排放总量及浓度,颗粒物和有机废气等污染物可达标排放。因此本项目符合《广 州市环境空气质量达标规划(2016-2025)》(穗府〔2017〕25号)的要求。

9、与《重点行业挥发性有机物综合治理方案》(环大气【2019】53(号) 相符性分析

根据《重点行业挥发性有机物综合治理方案》(环大气【2019】53号), 不在重点区域范围,属于重点行业——工业涂装, 着理检查要点见

7	下表。	4 I P-3	5.然区外传闻,属 1 至然 11 亚 工	亚体权,有建位直及然允
			表 1-3 工业企业 VOCs 治理检查	要点
	源项	检查 环节	检查要点	符合情况
ARTIV AREA		容器、 包装 袋	1.容器或包装袋在非取用状态时是否加盖、封口,保持密闭; 盛装过 VOCs 物料的废包装容器是否加盖密闭。 2.容器或包装袋是否存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。	所有油漆、固化剂和稀释剂 均等用铁桶装盛,所有原辅 材料、废包装容器均放置于 室内,符合要求。
			3.储罐类型与储存物料真实蒸气压、容积等是否匹配,是否存在破损、孔洞、 缝隙等问题。	/
A CONTRACTOR OF THE PARTY OF TH	VOCs 物料 储存	发 有 机体罐	4.内浮顶罐的边缘密封是否采用浸液式、机械式鞋形等高效密封方式。 5.外浮顶罐是否采用双重密封,且一次密封为浸液式、机械式鞋形等高效密封方式。 6.浮顶罐浮盘附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。 7.固定顶罐是否配有 VOCs 处理设施或气相平衡系统。 8.呼吸阀的定压是否符合设定要求。 9.固定顶罐的附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。	ADOS ADOS
		储库、 料仓	10.围护结构是否完整,与周围空间完全阻隔。 11.门窗及其他开口(孔)部位是否关闭(人员、车辆、设备、物料进出时,	设有专门独立的原材料仓 和危险废物间,均与周围空 间完全阻隔开,符合要求。
		, Xo	10	

		Victor — de	以及依法设立的排气筒、通风口除外)。	
		液态 VOCs 物料	1.是否采用管道密闭输送、或者采用密 闭容器或罐车。	均采用铁桶装盛,符合要求
	VOCs 物料 转移	粉状、 粒状 VOCs 物料	2.是否采用气力输送设备、管状带式输送机、螺旋输送机等密闭输送方式,或者采用密闭的包装袋、容器或罐车。	
	和输送	挥发 性有 机液 体装	3.汽车、	
). (E)	梨	理措施,或连通至气相平衡系统;有油气回收装置的,检查油气回收量。 1.液态、粉粒状 VOCs 物料的投加过程	K K K
754	W.	VOCs 物料 投加	是否密闭,或采取局部气体收集措施; 废气是否排至 VOCs 废气收集处理系 统。	VOC 及气均经密闭收集 后采用"二级活性炭吸附装 置"处理达标后经过排气筒
		放放	2.VOCs 物料的卸(出、放)料过程是否密闭,或采取局部气体收集措施、废气是否排至 VOCs 废气收集处理系统。3.反应设备进料置换废气、挥发排气、	高空排放,符合要求。
		化学 反应 单元	5.及应及备进科直换废(、挥发升(、 反应尾气等是否排至 VOCs 废气收集 处理系统。 4.反应设备的进料口、品料口、检修口、 搅拌口、观察孔等开口(孔)在不操作 时是否密闭	
	工艺 过程 VOCs	分离	5.离心、过滤、干燥过程是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。	
	无组 织排 放	特制单元	6 其他分离精制过程排放的废气是否 排至 VOCs 废气收集处理系统。 7.分离精制后的母液是否密闭收集;母 液储槽(罐)产生的废气是否排至 VOCs	
		% .	废气收集处理系统。 8.采用干式真空泵的,真空排气是否排 至 VOCs 废气收集处理系统。	XIII
A THE REPORT OF THE PERSON OF		真空系统	9.采用液环(水环)真空泵、水(水蒸 汽)喷射真空泵的,工作介质的循环槽 (罐)是否密闭,真空排气、循环槽(罐) 排气是否排至 VOCs 废气收集处理系 统。	
		R	10.混合、搅拌、研磨、造粒、切片、 压块等配料加工过程,以及含 VOCs 产 品的包装(灌装、分装)过程是否采用 密闭设备,或在密闭签闭内操作,或采 取局部气体收集措施;废气是否排至	

	程	VOCs 废气收集处理系统。		
	含Cs品使过程	11.调配、涂装、印刷、粘结、印染、干燥、清洗等过程中使用 VOCs 含量大于等于 10%的产品、是否采用密闭设备,或在密闭空间内操作,或采取局高气体收集措施;废气是否排至 VOCs 废气收集处理系统。 12.有机聚合物(合成树脂、合成橡胶、合成纤维等)的混合/混炼、塑炼/塑化/ 熔化、加工成型(挤出、注射、压制、压延、发泡、纺丝等)等制品生产过程,是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集进理系统。 13.载有 VOCs 废气收集处理系统。 13.载有 VOCs 废气收集处理系统。 13.载有 VOCs 废气收集处理系统。 13.载有 VOCs 物料的设备及其管道在开停工(车)、检维修和清洗时,是否据经料阶段将残存物料退净,并用密闭容器盛装;退料过程废气、清洗及吹扫过程排气是否排至 VOCs 废气收集处	VOCs 废气均经密闭收集 后采用"二级活性炭吸附装 置"处理达标后经过排气筒 高空排放,符合要求。	- -
	VOCs 无织气集理统	理系统。 14.是否与生产工艺设备同步运行。 15.采用外部集气罩的,距排气罩开口面最远处的 VOCs 无组织排放位置,控制风速是否大于等于 0.3 米/秒(有行业具体要求的按相应规定执行)。 16.废气收集系统是否负压运行;处于正压状态的,是否有泄漏。 17.废气收集系统的输送管道是否密闭、无破损。	VOCs 废气产生源均在独立的密闭房间内,采用外部集气罩的,距排气罩开口面最远处的 VOCs 无组织排放位置,控制风速大于 0.3 米/秒;废气收集系统均为负压运行;且废气收集系统的输送管道密闭、无破损,符合要求。	X
设与线性漏	DDAR 工作	1.企业密封点数量大于等于 2000 个的, 是否开展 LDAR 工作。 2.泵、压缩机、搅拌器、阀门、法兰等 是否按照规定的频次进行泄漏检测。 3.发现可见泄漏现象或超过泄漏认定 浓度的,是否按照规定的时间进行泄漏 源修复。 4.现场随机抽查,在检测不超过 100 个 密封点的情况下,发现有 2 个以上(不 含)不在修复期内的密封点出现可见泄 漏现象或超过泄漏认定浓度的,属于违 法行为。	水类流剂 1000	~
敞开 液面 VOCs 逸散	废水 集输 系统	1.是否采用密闭管道输送、采用沟渠输送未加盖密闭的,废水液面上方 VOCs 检测浓度是否超过标准要求。 2.接入口和排出口是否采取与环境空	/	

		rde I.	气隔离的措施。		
		废水 储 处 设	3.废水储存和处理设施敞开的,液面上方 VOCs 检测浓度是否超过标准要求。 4.采用固定顶盖的,废气是否收集至 VOCs 废气收集处理系统。	/	43
		开循为系	5.是否每 6 个月对流经换热器进口和出口的循环冷却水中的 TOC 或 POC 浓度进行检测;发现泄漏是否及时修复并记录。	, 6	
	命	统	1.VOCs 排放浓度是否稳定达标。 2.车间或生产设施收集排放的废气, VOCs 初始排放速率大于等于 3 千克/	THE PARTY OF THE P	
	有组 织 VOCs 排放	排气筒	小时、重点区域大于等于2千克/小时的,VOCs治理效率是否符合要求;采用的原辅材料符合国家有关低VOCs含量产品规定的除外。	VQCs 废气均经密闭收集 后采用"二级活性炭吸附装 置"处理达标后于 20m 高 的排气筒排放,符合要求。	
\$1\Z			3.是否安装自动监控设施,自动监控设施是否正常运行,是否与生态环境部门联网。 1.出口温度是否符合设计要求。		
		冷却 器/冷 凝器	2.是否存在出口温度高下冷却介质进口温度的现象。 3.冷凝器溶剂回收量。		K
		吸附装置	4.吸附剂种类及填装情况。 5.一次性吸附剂更换时间和更换量。 6.再生型吸附剂再生周期、更换情况。 7.废吸附剂储存、处置情况。	活性炭装填量设计合理,更 换的废活性炭在危废储存 间进行存储并定期交由有 危废资质的单位处理,符合 要求。	~
	废气 治理 设施	催化 氧化 器	8.催化(床)温度。 9.电或天然气消耗量。 10.催化剂更换周期、更换情况。		
W-X		热氧化炉	11.燃烧温度是否符合设计要求。 12.酸碱性控制类吸收塔,检查洗涤/吸	H/K	
A STATE OF THE STA		洗涤 器/吸 收塔	收液 pH 值。 13.药剂添加周期和添加量。 14.洗涤/吸收液更换周期和更换量。 15.氧化反应类吸收塔,检查氧化还原电位(ORP)值。	/	
	台	 ·账	企业是 应记录台版包括基本信息: 产 否按要 量等 生产过程: VOCs 产生		

求记录 活性炭更换时间和更换量,活性炭再生周期、更换情况, 台账。 活性炭储存、处置情况等。

本项目调漆、喷漆、烘干晾干等产生 VOCs 废气源均在独立的密闭房间内,原辅材料均使用铁桶装盛完好,收集 VOCs 废气采用"过滤棉+二级活性炭吸附装置"处理达标后再经 20m 高排气筒高空排放,因此项目符合《重点行业挥发性有机物综合治理方案》(环大气【2019】53 号)VOCs 治理要求。

10、与广东省地方标准《固定污染源挥发性有机物综合排放标准》(DB44) 2367—2022) 相符性分析

(1) VOCs 物料存储无组织排放控制要求:①VOCs 物料应当储存于密闭的容器、储罐、储库、料仓中。②盛装 VOCs 物料的容器应当存放于室内,或者存放于设置有雨棚、遮阳和防渗设施的专用场地。盛装 VOCs 物料的容器或者包装袋在非取用状态时应当加盖、封口,保持密闭。

(2) VOCs 物料转移和输送无组织排放控制要求:①液态 VOCs 物料应当采用密闭管道输送。采用非管道输送方式转移液态 VOCs 物料时,应当采用密闭容器、罐车。②粉状、粒状 VOCs 物料应当采用气力输送设备、管状带式输送机、螺旋输送机等密收输送方式,或者采用密闭的包装袋、容器或者罐车进行物料转移。

ASELIZ IN

- (3)工艺过程 VOCs 无组织排放控制要求:物料投放和卸放:物料投加和卸放无组织排放控制应当符合下列规定:a)液态 VOCs 物料应当采用密闭管道输送方式或者采用高位槽(罐)、桶泵等给料方式密闭投加。无法密闭投加的,应当在密闭空间内操作,或者进行局部气体收集,废气应当排至 VOCs 废气收集处理系统;b)粉状、粒状 VOCs 物料应当采用气力输送方式或者采用密闭固体投料器等给料方式密闭投加。无法密闭投加的,应当在密闭空间内操作,或者进行局部气体收集,废气应当排至除尘设施、VOCs 废气收集处理系统;c) VOCs 物料卸(出、放)料过程应当密闭,卸料废气应当排至 VOCs 废气收集处理系统;无法密闭的,应当采取局部气体收集措施,废气应当排至 VOCs 废气收集处理系统。
 - (4) 含 VOCs 产品的使用过程: VOCs 质量占比≥10%的含 VOCs 产品,

其使用过程应当采用密闭设备或者在密闭空间内操作,废气应当排至 VOCs 废气收集处理系统;无法密闭的,应当采取局部气体收集措施,废气应当排至 VOCs 废气收集处理系统

(5) 废气收集系统排风罩(集气罩)的设置应当符合 GB/T 16758 的规定。采用外部排风罩的、应当按 GB/T 16758、WS/T 757—2016 规定的方法测量控制风速,测量点应当选取在距排风罩开口面最远处的 VOCs 无组织排放位置,控制风速不应当低于 0.3 m/s(行业相关规范有具体规定的,按相关规定执行)。

本项目油漆、固化剂和稀释剂等产生 VOCs 废气原辅材料均使用铁桶装盛完好,所有原辅材料均放置于室内专门设立的原辅材料仓库。调漆、喷漆、烘干晾干等产生 VOCs 废气源均在独立的密闭空间内操作,且整体进行负压收集 VOCs 废气,收集后采用"过滤棉+二级活性炭吸附装置"处理达标后再经 20m 高排气筒排放。经上述措施处理后、可减少有机废气的无组织排放,项目产生的有机废气不会对周围大气环境产生明显影响。因此项目符合广东省地方标准《固定污染源挥发性有机物综合排放标准》(DB44/2367—2022)的要求。

11、与《广东省生态环境保护"十四五"规划的通知》(粤环【2021】10号)相符性分析

《广东省生态环境保护"十四五"规划的通知》指出: "大力推进挥发性有机物(VOCs)源头控制和重点行业深度治理。开展原油、成品油、有机化学品等涉 VOCs 物质储罐排查,深化重点行业 VOCs 排放基数调查,系统掌握工业源 VOCs 产生、处理、排放及分布情况,分类建立台账,实施VOCs 精细化管理。在石化、化工、包装印刷、几处涂装等重点行业建立完善源头、过程和末端的 VOCs 全过程控制体系。大力推进低 VOCs 含量原辅材料源头替代,严格落实国家和地方产品 VOCs 含量限值质量标准,禁止建设生产和使用高 VOCs 含量的溶剂型涂料、油墨、胶粘剂等项目。严格实施 VOCs 排放企业分级管控,全面推进涉 VOCs 排放企业深度治理。开展中

小型企业废

ARLIVA INTERNATIONAL PROPERTY OF THE PROPERTY

气收集和治理设施建设、运行情况的评估、强化对企业涉 VOCs 生产车间/工序废气的收集管理,推动企业开展治理设施升级改造。推进工业园区、企业集群因地制宜统筹规划建设一批集中喷涂中心(共性工厂)、活性炭集中再生中心,实现 VOCs 集中高效处理。开展无组织排放源排查,加强含 VOCs 物料全方位、全链条、全环节密闭管理,深入推进泄漏检测与修复(LDAR)工作。"

本项目使用油漆、固化剂和稀释剂等产生 VOCs 废气原辅材料的用量较少,且调漆、喷漆、烘干晾干等产生 VOCs 废气源均在独立的密闭空间内操作,且整体进行负压收集 VOCs 废气,收集后采用"过滤棉+二级活性炭吸附装置"处理达标后再经 20m 高排气筒排放。因此本项目与《广东省生态环境保护"十四五"规划的通知》(粤环【2021】10号)是相符的。

12、与《广州市人民政府办公厅关于印发广州市生态环境保护"十四五" 规划的通知》(穗府办〔2022〕16 号)相符性分析

ARIVA NA

规划要求:推动生产全过程的挥发性有机物(VOCs)排放控制。注重源 头控制,推进低(无)挥发性有机物(VOCs)含量原辅材料生产和替代。推 动低温等离子、光催化、光氧化等治理工艺淘汰,并严禁新、改、扩建企业 使用该类型治理工艺。

本项目使用油漆、固化剂和稀释剂等产生 VOCs 废气原辅材料的用量较少,项目产生 VOCs 废气不采用低温等离子、光催化、光氧化等治理工艺,采用"过滤棉+二级活性炭吸附装置"处理 VOCs 废气达标后再经 20m 高排气筒排放。因此本项目与《广州市人民政府办公厅关于印发广州市生态环境保护"十四五"规划的通知》(穗府办〔2022〕16 号》是相符的。

13、与《广州市工业产业区块划定成果》(穗工信规字〔2020〕8号)相符性分析

"工业产业区块内用地如涉及永久基本农田、生态保护红线、饮用水水源保护区、环境空气质量功能区一类区、河涌水系、历史文化名城保护对象以及国土空间总体规划、城市环境总体规划、区域空间生态环境评价、历史文

化名城相关保护规划等上位规划划定的例性管控空间要素的,应按照相关法 律法规和管理要求管控。 鼓励工业企业和项目向工业产业区块内聚集。支持 村经济发展留用地在工业产业区块内选址。由于城市更新、土地整备、不符 合生态环境要求等需收回位于工业产业区块外的规模以上工业企业、全市百 强工业企业、骨干产业链企业等重要工业企业用地的,鼓励企业搬迁到工业 产业区块内继续生产经营,各区可结合本区实际制定奖励措施....."

项目选址位于《广州市工业产业区块划定成果》 号)的一级控制线范围内,一级控制线是保障产业长远发展而确定的工业用 理的底线,本项目符合工业项目落地集聚发展的要求。

与《关于珠江三角洲地区严格控制工业企业挥发性有机物(VOCs) (粤环〔2012〕18 号)相符性分析7

ARE LANGE

在自然保护区、水源保护区、风景名胜区、森林公园、重要湿地、生态 敏感区和其他重要生态功能区实行强制性保护,禁止新建 VOCs 污染企业。 原则上珠江三角洲城市中心区核心区域内不再新建或扩建 VOCs 排放量大或 使用 VOCs 排放量大产品的企业 为争到 2015 年底,珠江三角洲地区 VOCs 重点污染源全部采取有效的处理措施,企业工艺装备、污染治理水平大幅度 提升,确保 VOCs 排放企业稳定达标排放,并最大限度削减 VOCs 的排放;

本项目不在自然保护区、水源保护区、风景名胜区、森林公园、重要湿 地、生态敏感区和其他重要生态功能区内。本项目将激光雕刻、吸塑产生的 污染物经之级活性炭吸附装置处理后于20米高排放。喷漆产生的有机废气 帘柜预处理后,再和调漆、烘干晾干有机废气一起经**过了**过滤棉+二级 生炭吸附装置"处理后于 20 米高排放。通过采取以上防治措施,可有效降 低污染物排放总量及浓度,有机废气可实现达标排放。因此本项目符合《广东 省环境保护厅关于珠江三角洲地区严格控制工业企业挥发性有机物(VOCs) 排放的意见》(粤环(2012)18号)的相关要求。

15、与《广东省涉挥发性有机物(VOCs)重点行业治理指引》 [2021]43 号) 相符性分析 表表對對某一樣

适用范围:适用于轮胎制造(C2911)、橡胶板、管、带制造(C2912)、 橡胶零件制造(C2913)、再生橡胶制造(C2914)、日用及医用橡胶制品制 造(C2915)、运动场地用塑胶制造(C2916)、其他橡胶制品制造(C2919)、 塑料薄膜制造(C2921)、塑料板、管、型材制造(C2922)、塑料丝、绳及 编织品制造(C2923) 人泡沫塑料制造(C2924)、塑料人造革、合成革制造 (C2925)、塑料包装箱及容器制造(C2926)、日用塑料制品制造(C2927) 人造草坪制造《C2928》、塑料零件及其他塑料制品制造(C2929) 化业企业或生产设施。

表 1-4 橡胶和塑料制品业 VOCs 治理指引及相符性

	7	///			N/K	相
*	Zy.	序	环节	控制要求	本项目实施情况	符
				20°4		性
117				源头削减		
		1	水 涂 牲 柒 料	包装涂料: 底漆 VOCs 含量≤420g/L, 中漆 VOCs 含量≤300g/L, 面漆 VOCs 含量≤270g/L。	本项目使用水性涂 料底漆 VOCs 含量 ≤ 420g/L, 面漆 VOCs 含量 ≤ 270g/L。	相符
		10	溶剂型胶粘剂	苯乙烯-丁二稀-苯乙烯嵌段共聚物橡胶 类胶粘剂 VOCs 含量≤500g/L。	本项目使用胶水 VOCs 含 量 ◀ 500g/L。	符符
	30			过程控制	11/1	
		42		VOCs 物料应储存于密闭的容器、包装袋、储罐、储库、料仓中。	本项目含 VOCs 物	
		43	VOCs 物料 储存	盛装 VOCs 物料的容器是否存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。盛装 VOCs 物料的容器在非取用状态时应加盖、封口,保持密闭。	料包装桶储存均存 放于室内,在非使 用状态时封口,保	相符
<u> </u>			ر ا	18	持密闭。	

				大百日今 VOC #m		
		VOCs 物 料转移和	液体 VOCs 物料应采用管道密闭输送。 采用非管道输送方式转移液态 VOCs 物	本项目含 VOCs 物料采用密闭的包装	相	
		输送	料时,应采用密闭容器或罐车。	桶进行物料转移。	符	1
			液态 VOCs 物料采用密闭管道输送方式或采用高位槽(罐)、桶泵等给料方式	本项目含 VOCs 物料在密闭空间中操	相	F-X
	44		密闭投加:无法密闭投加的,在密闭空间内操作,或进行局部气体收集,废气	作,废气排至 VOCs 废气 收集 处理系	符	
		工事計程	排至 VOCs 废气收集处理系统。 浸胶、胶浆喷涂、涂胶、喷漆、印刷、	统。	5	
			清洗等工序使用 VOCs 质量占比大于等于 10%的原辅材料时,其使用过程应采	本项目拼接/红装、 喷漆工序在密闭空	相	
	46	K/	用密闭设备或在密闭空间内操作,废气应排至 VOCs 废气收集处理系统;无法	间内操作、且废气 均排至 VOCs 废气	符	
			密闭的,应采取局部气体收集措施,废 气应排至 VOCs 废气收集处理系统。	收集处理系统。		
			载有 VOCs 物料的设备及其管道在计停	退料时残存物料退 净,并用密闭容器		
7	48	非正常排	工(车)、检维修和清洗时,应在退料阶段将残存物料退净,并用密闭容器盛	盛装。退料、洗及 吹扫的非正常排放	相	
		放	装,退料过程废气应排至 VOCs 废气收 集处理系统;清洗及吹扫过程排气应排	废气经集气罩收集 引至设施处理达标	符	
			至 VOCs 废气水集处理系统。	后通过高空排放。		X
			末端治理		L L	~
	49	13	远处的 VOCs 无组织排放位置,控制风速不低于 0.3m/s。	本项目控制风速不 低于 0.3m/s。	想	/
			废气收集系统的输送管道应密闭。废气	本项目废气收集系		
	50/	发列仪集	收集系统应在负压下运行, 若处于正压状态, 应对管道组件的密封点进行泄漏	统的输送管道密	相	
\		X	检测, 泄漏检测值不应超过 500μmol/mol,亦不应有感官可察觉泄	闭。废气收集系统	符	
法原			漏。 塑料制品行业: a) 有机废气排气筒排放	在负压下运行。 本项目塑料吸塑、		
XV			浓度不高于广东省《大气污染物排放限	激光雕刻产生的有	相	
725	52	排放水平	值》(DB4427-2001)第八月段排放限值,	机废气排放浓度满	符	
			合成革和人造革制造企业排放浓度不高	足《合成树脂工业		
			19			

一					Ţ	-27		
准》(GB21902-2008 文 取帐值,若国					,000			7
家和我省出台演员《用于塑料制品制 中表 5 大气污染物 造业的大气污染物排放标准,则有机废 也如果大气污染物 排放 下 2 地 2 地 3 大气污染物 排放 下 3 kg 4 人 2 地 2 地 3 大气污染物 排放 下 3 kg 4 人 2 地 2 地 3 大气污染物 排放 下 3 kg 4 人 2 地 3 大 3 kg 4 人 2 地 3 大 4 地 3 地 4 地 4 地 4 地 4 地 4 地 4 地 4 地 4 地					于《合成革与人造革工业污染物排放标	污染物排放标准》		
造业的大气污染物排放标准。则有机废 气排气器被放度不高于相应的排放限 在 24 间或生产设施排气中 NMHC 初始 排放速率23kg/h 时,建设 VOCs 处理设 施且处理效率280%; b)厂区内无组织排 放监控点 NMHC 的小时平均浓度值不超过 过 6mg/m³, 任意一次浓度值不超过 20mg/m³。 本项目型料激光雕 刺以及吸擎产生的 有机废气引入"二 设新性类装置"进行吸附处理。喷涂 发 15 量					准》(GB21902-2008)非放限值,若国	(GB31572-2015)		
一					家和我省出台并实施适用于塑料制品制	中表 5 大气污染物		1
(在一举问或生产设施排气中 NMIC 初始 排放 浓度 限值。 NMHC 初始排放 海上处理效率≥80%, b) 厂区内无组织排 本小于 3kg 400 区 内无组 5kg 400 区 内面 5kg 400 区 由面 5kg 400 区					造业的大气污染物排放标准,则有机废	排放限值及表 9 企		35
## 放應率≥3kg/h 时,建设 VOCs 处理设					气排气管排放浓度不高于相应的排放限	业边界大气污染物		
施且处理效率≥80%; b)厂区内无组织排					值,争间或生产设施排气中 NMHC 初始	排放浓度限值。	$^{\prime}O_{O}$	
放篮控点 NMHC 的小时平均浓度值不超过 点 NMHC 的小时平均浓度值不超过 点 NMHC 的小时平均浓度值不超过 点 NMHC 的小时平均浓度值不超过 6mg/m³。 本项目型料激光雕刻以及吸塑产生的有机废气引入"二级活性炭类器"进行吸附处理。喷涂 皮有多量进行选择,b 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量确定,c)吸附剂应及时更换或有效再整确定,c)吸附剂应及时更换或有效再整					排放速率≥3kg/h 时,建设 VOCs 处理设	NMHC 初始排放速	5	
过 6mg/m³, 任意一次浓度值不超过 点 NMHC 的小时 平均浓度值不超过 6mg/m³, 任意一次 浓度值 不超过 20mg/m³。 本项目塑料激光雕 刻以及吸塑产生的 有机废气引入 "二级活性炭装置"进行吸附处理。喷涂 废 约全应根据废气的成分、性质和影响吸 附过程的物质性质及含量进行选择, b 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的劝查吸附量			4	1 Air	施且处理效率≥80%; b) 厂区内无组织排	率小于 3kg/h。下区		
20mg/m³。 P均浓度值不超过 6mg/m³,任意一次 浓度值不超过 20mg/m³。 本项目塑料激光雕 刻以及吸塑产生的 有机废气引入"二 级活性炭装置"进 行吸附处理。喷涂 废气经"小动体" 下吸附床层的吸附剂用量应根据废气处理 量、污染物浓度和吸附剂的动态吸附量 确定;c)吸附剂应及时更换或有效更生 经济性炭装置"进 行吸附处理。活性 炭均定期更换,保 持其活性。			X	V	放监控点 NMHC 的小时平均浓度值不超	内无组织排放监控		
6mg/m³, 任意一次 浓度值不超过 20mg/m³。 本项目塑料激光雕 刻以及吸塑产生的 有机废气引入"二级活性炭装置"进 行吸附处理。喷涂 废气经"水龙龙" 放射定程的物质性质及含量进行选择; b) 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量确定; c) 吸附剂应及时更换或有效更多 发生的 VOCs 废气一起引入"二级活性炭装置"进行吸附处理。活性炭均定期更换,保持其活性。		24	115		过 6mg/m³, 任意一次浓度值不超过	点 NMHC 的小时		
浓度值不超过 20mg/m³。 本项目塑料激光雕 刻以及吸塑产生的 有机废气引入"二 级活性炭装置"进 行吸附处理。喷涂 废气经"水流化"	, K	X			20mg/m ³ 。	平均浓度值不超过		
20mg/m³。 本项目塑料激光雕刻以及吸塑产生的有机废气引入"二级活性炭装置"进行吸附处理。喷涂皮气经"水水水",使气经"水水水",使气经"水水水",使气经"水水水",使气经"水水水",使气经"水水水",使气经"水水水",使人经济上,有效理制。为拼接/发发产生的 VOCs 废气一起引入"二级活性炭装置"进行吸附处理。活性炭均定期更换,保持其活性。					200 v	6mg/m³, 任意一次		
本项目塑料激光雕 刻以及吸塑产生的 有机废气引入"二 级活性炭装置"进 行吸附处理。喷涂 废气经"水产" 相 预处理结 两拼接/ 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量确定;c)吸附剂应及时更换或有效更生 级活性炭装置"进 行吸附处理。活性 炭均定期更换,保 持其活性。	2/17				NO.	浓度值不超过		
刻以及吸塑产生的有机废气引入"二级活性炭酸附法》:a) 预处理设施设计与运行管理 设备应根据废气的成分、性质和影响吸附过程的物质性质及含量进行选择;b) 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量强、污染物浓度和吸附剂的动态吸附量强、污染物浓度和吸附剂的动态吸附量级有效更生。						20mg/m^3 .		
の					HILL THE STATE OF	本项目塑料激光雕		15
吸附床(含活性炭吸附法): a) 预处理设备应根据废气的成分、性质和影响吸附过程的物质性质及含量进行选择; b) 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量确定; c) 吸附剂应及时更换或有效再生 缓活性炭装置"进行吸附处理。活性炭发置"进行吸附处理。活性炭均定期更换,保持其活性。					14	刻以及吸塑产生的		1/2
吸附床(含活性炭吸附法): a) 预处理 行吸附处理。喷漆 设备应根据废气的成分、性质和影响吸 废气经"水冷花" 废气经"水冷花" 预处理局 与拼接/ 级计与运 。						有机废气引入"二		Z>-
设备应根据废气的成分、性质和影响吸附过程的物质性质及含量进行选择; b) 吸附床层的吸附剂用量应根据废气处理量、污染物浓度和吸附剂的动态吸附量确定; c) 吸附剂应及时更换或有效更生 级活性炭装置"进行吸附处理。活性炭均定期更换,保持其活性。					- 吸附床(含活性炭吸附法): a) 预处理	级活性炭装置"进	00	
游理设施 设计与运					\ _	行吸附处理。喷漆	×	
万管理				治理设施		废气经"水谷柜"	相	
一			53	设计与运		预处理局, 为拼接/	符	
确定; c) 吸附剂应及时更换或有效再生		\\		行管理		组装产生的 VOCs		
级活性炭装置"进行吸附处理。活性炭均定期更换,保持其活性。	-XI	*			√ √	废气一起引入"二		
炭均定期更换,保持其活性。	X					级活性炭装置"进		
持其活性。	W/s				A LAND	行吸附处理。活性		
					No.	炭均定期更换,保		
						持其活性。		
\sim 20								
**************************************					20			
					XXX			

		T-\$\frac{1}{2}		
56	VOCs 治理设施应与生产工艺设备同步运行,VOCs 治理设施发生故障或检修时,对应的生产工艺设备应停止运行,待检修完毕后同步投入使用;生产工艺设备不能停止运行或不能及时停止运行的,应设置废气应急处理设施或采取其	生产工艺设备应停	相符	-43
57	他替代措施。 环境管理 建立含 VOCs 原辅材料台账,记录信 VOCs 原辅材料的名称及其 VOCs 含量	毕后同步 投入 使用。		
58 管理台	处理改施关键参数、废气处理设施相关 耗材(吸收剂、吸附剂、催化剂等)则	按要求建立 VOCs 原辅材料台账、废 气收集处理设施台 账、危废台账,台 账保存期限不少于。	相符	
60	买和处理记录。 建立危废台账,整理危废处置合同、转移联单及危废处理方资质佐证材料。 台账保存期限不少于3年。	本项目有机废气排		
63 自行监	塑料制品行业简化管理排污单位废气排放每年一次。 放口及无组织排放每年一次。	# 放口每年监测一 次。厂界无组织废 气每半年监测一	符	

					-		
				Miss	次。		
				KKK,	工艺过程产生的含		A
				工艺社和文件的A VOC。 底刺(冰、流)	VOCs 废料(渣、		17/1/
				工艺过程产生的含VOCs废料(渣、液)	液) 按要求进行储	+	-37
		65	危废管理	应按照相关要求进行储存、转移和输送。	存、转移和输送。	相	K'
				盛装过 VOCs 物料的废包装容器应加盖	盛装过 VOCs 物料	NO TO)
			0	密 闭。	的废包装容器应加		
			JX.		盖密闭。		
		Y,	D		A FEET		
	/y	66		新、改、扩建项目应执行总量替代制度,	本项目 VOCs 排放		
15				明确 VOCs 总量指标来源。	量由本级生态环境		
			建设项目	新、改、扩建项目和现有企业 VOCs 基	主管部门自行确定		
AID			VOCs 总	准排放量计算参考《广东省重点行业挥	 范围,并按照要求	相	
BG.		67	量管理	友性有机物排放量计算方法核算》进行 核算,若国家和我省出台适用于该行业	 审核总量指标来	符	. \
				的 VOCs 排放量计算方法,则参照其相	源,填写 VOCs 总		Y.C
				关规定执行。	量指标来源说明。		K/K
				新、改、扩建项目和现有企业 VOCS 基 准排放量计算参考《广东省重点分业挥 发性有机物排放量计算方法核算》进行 核算,若国家和我省出合适用于该行业 的 VOCs 排放量计算方法,则参照其相 关规定执行。		1/2	~-
						0	
				V		XOC	
<u>'</u>			XXXX	·	/#/		
					y T		
	, vs				14		
	*=X			*	,3		
X, XX							
Mary U							
<i>'</i>) .							
				KILL			
				22			
				XXXX			
			Xo.				

二、建设项目工程分析

一、项目概况

(一) 原项目概况

深語 1000 下江 準 广州博艺塑料制品有限公司成立于2018年11月18日,原地址位于广州市 番禺区大龙街茶东村东盛路 15 号三座 101,租赁 1 栋二层厂房生产经营,占地面 积为650平方米,建筑面积为1300平方米。原项目主要从事美容机和灯箱外壳的生产,年产美容机4000台、灯箱外壳1000个。 原项目的相关环保手续见下表:

表 2-1 原项目的相关环保手续情况表

- 1				
7	序	环保	办理情况	备
3	号	手续	沙 连再死	注
	1	环评 批复	于 2019 年 3 月 6 日取得广州市番禺区环境保护局关于广州博艺塑料制品有限公司年产美容机 4000 台、灯箱外壳 1000 个建设项目环境影响报告表的批复,审批文件为穗(番)环管影(2019)75 号。	见 附 件 7
j	2	竣工 环保 验收 意见	于2019年6月18日取得广州博艺塑料制品有限公司年产美容机4000台、灯箱外壳1000~建设项目竣工环境保护验收工作组意见。	见 附 件 8
	3	排污 许可 证	登记编号为: 91440101MA5CJPXGX4001Y; 有效期限: 2024-07-14 至 2029-07-15。	见附件

· 注建后概况

设

内

容

需求和企业发展,广州博艺塑料制品有限公司拟从广州市番禺区大龙 付东盛路 15 号三座 101 迁至广州市番禺区石基镇桥 计分金龙路 284 号二 於101、301、401室,迁建后生产的产品种类、产能均不变。

本项目为广州博艺塑料制品有限公司年产美容机4000台、灯箱外壳1000个 迁建项目。广州博艺塑料制品有限公司迁至广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室, 总投资 100 万元, 厂房占地面积 400m², 建筑面 积 1200m²,项目不设员工食堂、宿产及锅炉等,共雇佣员工 15 人,年工作 300

天,每天工作8小时,一班制。

根据《中华人民共和国环境影响评价法》(2018年12月修订)、中华人 民共和国生态环境部《建设项目环境影响评价分类管理名录(2021年版)》, 本项目类别属于"二十六、橡胶和塑料制品业--53、塑料制品业--其他(年用非 溶剂型低 VOCs 含量涂料 10 吨以下的除外)",因此本项目需编制环境影响报 告表,建设单位委托广州瑞华环保科技有限公司承担本项目的环境影响评价 作,评价单位接受任务后即组织有关人员进行现场踏勘、区域环境现状调查和 基础资料收集,并对建设项目的建设内容和排污状况进行了深入分析,在此基 础上按照国家相关环保法律、法规、污染防治技术政策有关规定及环境影响评 **技术导则要求编制了环境影响评价报告表。**

二、工程组成

1、基本情况

AR IV

本项目租赁广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室,租赁范围内建筑物占地面积 400m 建筑面积 1200m2。本项目租赁厂房所 在建筑物共 4 层, 总高度为 18 米 中 201 室为家美金属制品公司厂房。本项 目租赁的厂房内不设置办公室。本项目建筑物主要规模及功能见下表。

表 2-2 本项目建筑物主要规模及功能一览表

租用楼层	建筑面积(m²)	功能划分	单层高度(m)
1 楼	400	开料、雕刻、修边、吸塑、原材料区、 一般固废间	100
3 楼	400	修边、开料、雕刻、组装区、危险废 物间	×14
A D	400	底漆房、面漆房、烘干房、打磨房、 成品组装区	4
合计	1200		/

本项目的工程组成详见下表。

表 2-3 项目工程组成

		· · · · · · · · · · · · · · · · · · ·
类	工程	建设内容
别	名称	建议 内在
		24
		2/V

	101室	主要进行 ABS 板材雕刻、加热吸塑》修边以及中纤板开料。包括雕刻区、加热吸塑区、开料区、修边区、原材料区、一般固废间
体 工	301室	主要进行 ABS 板材的开料、修边、打磨以及亚克力板的雕刻。包括开料区、激光雕刻区、修边区、组装区、危险废物间
程	401 室	主要对产品进行喷底漆和面漆、烘干打磨以及组装。包括底漆房、面漆房、烘干房、打磨房、成品组装区
新 助 工	其它配套	卫生间
程置工工	仓储系统	原料仓、成品仓
程	给水 工程	生活用水和生产用水均的市政供水管网提供。
公 用 工 程	排水工程	本项目实行雨污分流。雨水经雨水管道收集后排入市政雨水管网;本项目设置1个生活污水排放工。生活污水经三级化粪池预处理达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后排入市政污水管网,尾水最终汇入市桥水道。
	世 世 世 世 七 七 七 七	项目用电由供电局提供
	废水 处理 设施	生活污水经三级化粪池预处理后排入市政污水管网汇入前锋净水厂进行集中处理达标后排放。
	废气	激光雕刻、吸塑产生的污染物经二级活性炭吸附装置处理后于 20 米高排放,排气口编号为 FQ-01。 喷漆产生的有机废气和颗粒物经水帘柜预处理后,再和调漆、烘干、晾
TA TA	处理 设施	干以及拼接/组装产生的有机废气进入"过滤棉+二级活性炭吸附装置" 处理后于 20 米高排放,排气口编号为 FQ-02。 喷底漆后打磨粉尘、ABS 板材开料、雕刻、打磨粉尘和中纤板开料、打
相	 · 噪声 · 防治	磨粉尘均通过布袋除尘器收集处理后无组织排放。 选用低噪型设备,合理布设,采取墙体隔声、距离衰减等降噪措施。
	措施固废处理	生活垃圾收集交给环卫部门处理;一般固废收集后交由有处理能力的一般固废处理单位处理,危险废物收集交由具有危险废物资质单位处置处

措施 理。设置 1 个危险废物暂存间, 面积为 20m², 位于 3 楼北侧。

2、产品方案

尧的生产,项目迁建前和迁建后生产的产品 本项目主要从事美容机和灯箱 名称、产量不变。具体的产品方案见下表。

、ア、一表 2-4 产品规模一览表

ı				4 / PP //			
	序	产品名	迁建前		迁建后		年运行
	号	称	产品型号及规格	年产量	产品型号及规格	年产量	时数
	1	美容机	1000×600×500mm	4000 台/年	1000×600×500mm	4000 台/ 年	2400 小
	2	灯箱外	800×400×100mm	1000 个/年	800×400×100mm	1000 个	时

3、原辅材料及理化性质

ARE LA

本项目所用的塑料全部使用新料,不使用再生塑料。主要使用的原辅材料 见表 2-5 所示。

项日主更原辅材料及在田量

		表 2-5	日王晏原拥权科及年用1	<u> </u>			
原材料名称	形态	原材料 迁建前年用量(吨)	科用 星 迁建后年用量(吨)	规格包装	最大 贮存 量	贮存位置	使用 工序 或用 途
ABS 板 材	固 态, 块状	117	55	/	3 吨	原材料仓	产品原材
亚克 力 板	态, 块状	5	5		A CHE	原材料仓	产品装饰材料
胶水	液态	0.6	0.6	15kg/ 桶	0.10 吨	原材料仓	组装
水 性 底	液态	2	1.71	15kg/ 桶	0.10 吨	原材料	喷底 漆
		ががまれず	26				

	漆			(000			仓		
	水性面漆	液态	2	1.27	15kg/ 桶	0.06 吨	原材料仓	喷面 漆	
	油性底漆	液态	00/25/	0.16	15kg/ 桶	0.01 吨	原材料仓	喷底漆	\Diamond
	油性面漆	液态	0.25	0.13	15kg/ 桶	0.02	原材料仓	喷面漆	
	性固化剂	液态	2	0.09	15kg/ 桶	0.01 吨	原材料仓	调漆	
	油性固化剂	液态	0.25	0.15	15kg/ 桶	0.01	原材料仓	调漆	×,
	稀释剂	液态		0.07	15kg/ 桶	0.01 吨	原材料仓	调漆】	- '7
	中纤板	固 态,	50 张 (1.2*2.44*0.015m)	50 张 (1.2*2.44*0.015m)	/	10.张	原材料仓	制作 包装 盒原 料	
X TO WE	腻 子 粉	固 态 粉 状	0.7	0.7	3 .5kg/ 桶	0.014 吨	原材料仓	批 灰, 制作 包装 盒 辅	
25	美 容 机	包括 电器 配	4000 套	4000 套	/	/	原材料	组装	

其	件、	#//	仓
他	螺		
配	丝、	r F)	
件	开关	" "	
	等		

美容机其他配件均为外购的原辅料,主要用于产品的组装工序,不会产生危险废物。

原辅材料理化性质如下:

ABS 板材: ABS 板材是板材行业新兴的一种材料,全名为丙烯腈/了二烯/苯乙烯共聚物板。ABS 塑料是丙烯腈(A)、丁二烯(B)、苯乙烯(S) 与种单体的三元共聚物。ABS 树脂的结构,有以弹性体为主链的接枝共聚物和以坚硬的 ABS 树脂物主链的接枝共聚物;或以橡胶弹性体和坚硬的 ABS 树脂混合物。ABS 板材密度为 1.08×10³kg/m³。美容机外壳以及灯箱外壳需使用 ABS 板材,根据美容机和灯箱外壳的规格尺寸计算所需塑料表面积共为 12080m²,ABS 板材平均厚度约为 4mm,考虑 5%的损耗,则计算出本项目 ABS 板材的年用量为 55t。ABS 板材主要用作美容机和灯箱外壳产品的主要原料。

亚克力板材:亚克力板是丙烯酸类和甲基丙烯酸类化学品的通称。包括单体、板材、粒料、树脂以及复合材料。亚克力板由甲基烯酸甲酯单体聚合而成,即聚甲基丙烯酸甲酯 (PMMA) 板材有机玻璃,是一种经过特殊工艺加工的有机玻璃。应用行业亚克力的原材料一般以颗粒、板材、管材等形式出现,亚克力板材密度为 1.2×10³kg/m³。本项目使用亚克力板材面积为 808m²,亚克力板材平均厚度约为 5mm,考虑 3%的损耗,则计算出本项目亚克力板材的年用量为 56。主要用于美容机和灯箱外壳产品的装饰材料。

水性底漆:液体;pH:9;沸点:>37.78℃;闪点:94℃(闭杯);爆炸(燃烧)下限:1.4%,上限:7.6%(轻芳烃溶剂石脑油(石油));相对密度:1.43;可溶性:在冷水中不可溶;稳定性:稳定。主要成分及占比为:滑石 10-25%,碳酸钙 10-25%,聚丙烯酸酯树脂 1-10%,轻芳烃溶剂石脑油(石油)1-10%,1,2,4-三甲苯 1-10%,1-丁氧基-2-丙醇 1-10%。

水性面漆: 液体; 白色; 微弱气味**,** 点: >37.78℃; 闪点: 100℃ (闭 杯);相对密度:1.26;溶解性:部分可溶于冷水;稳定性:稳定。主要成分 及占比为: 2-丁氧基乙醇 1~10%、甘醇一丁醚 1~10%、环氧树脂 20-30%、 颜料 20-30%。

油性底漆: 液体; 沸点: >37.78℃; 闪点: 23℃(闭杯); 爆炸(燃烧) 下限: 1.4%, 上限: 11.3%(正丁醇); 相对密度: 1.25; 可溶性: 在冷水中不 可溶;稳定性:稳定。主要成分及占比为:环氧树脂 10~25%,二甲苯异构体 混合物 10~25%, 硫酸钡 10~25%, 磷酸锌 1~10%, 正丁醇 1~10%, 公苯 1~10%。

油性面漆:微黄色液体;天那水味;闪点:22℃(闭杯),引燃温度:186 />爆炸上限: 11.5%; 爆炸下限: 2.2%; 易燃; pH: 6~8; 熔点: -73.5℃; 沸点: 110℃; 相对密度(水=1): 0.9; 相对蒸汽密度(空气=1): 4 ; 饱和 蒸气压(27℃): 27kPa; 稳定; 不溶于水, 可混溶于乙醇、乙醚、氯仿等多数有 机溶剂。主要成分及占比为:醇酸树脂 27%、透明粉 8%、乙酯 20%、助剂(己 二醇) 20%、丁酯 10%、哑粉 5%、工中苯 5%、滑石粉 5%。

水性固化剂:液体;沸点: ▶37.78℃;闪点:71℃(闭杯);爆炸(燃烧) 下限: 2.8%, 上限: 12.7% (三乙酸(1,2-丙二醇)酯); 相对密度: 1.08; 可溶 性:在冷水中不可溶;稳定性:稳定。主要成分及占比为:1,6-二异氰酸根合己 烷的均聚物 25-40%, 二乙酸(1,2-丙二醇)酯 25-40%, 亲水异氰酸酯基均聚物 10-25%。

油性固化剂: 沸点: >37.78℃; 闪点 (闭杯): 23℃; 相对密度: 0.96; 急定性、稳定;主要成分及占比为:1,6-二异氰酸根合己烷均聚物 25-40%、乙 **还**丁酯 25-40%、轻芳烃溶剂石脑油 10-20%、1,2,4-三甲基苯 10-20%。

稀释剂:液体;沸点: >37.78℃;闪点: -18℃(闭杯);材料支持燃烧; 相对密度: 0.88; 可溶性: 在冷水中不可溶; 稳定性: 稳定。主要成分及占比 为: 乙酸正丁酯 25-40%, 二甲苯异构体混合物 10-25%; 乙酸-1-甲氧基-2-丙基 酯 10-25%; 轻芳烃溶剂石脑油 10-25%, 乙酸乙酯 1-10%, 1,2,4-三甲基苯 10-20%, 提供排列 乙苯 10%。

腻子粉:又称不饱和聚酯树脂腻子,是由不饱和聚酯树脂(主要原料)以 (聚酯树脂由二元醇或二元酸或多元醇和多元酸缩 及各种填料、助剂等组成。 聚而成的高分子化合物的总称、沸点为240~245℃,常温不易挥发。)填料主 要起填充作用,常用的有碳酸钙、滑石粉和石英砂等。助剂有增稠剂、保水剂、 抗冻剂、滑爽剂和减水剂等。

胶水: 糊状物: 白色; 溶剂味; 沸点: 85℃~110℃; 闪点: -15℃~4℃ 闭 杯);蒸气压(20℃):70-90mmHg;蒸汽密度:2.0-3.1;相对密度:0.8-0.9;水 中不溶。主要成分及占比为: 合成橡胶 62%, 乙醇 35%, 添加剂 DMC3%。根 据胶水 MSDS 报告可知,挥发性有机物 VOCs 最大占比为 38%、核算 VOCs 含 量为: 38%×0.9g/cm³×1000=342g/L,符合《胶粘剂挥发性有机化合物限量》 (GB33372-2020) 中的溶剂型胶粘剂 VOC 含量限量(包装类苯乙烯-丁二稀-苯乙烯嵌段共聚物橡胶类)要求(≤500g/L)。**次**籍外壳产品无需使用胶水,只 有美容机产品才使用胶水。每台美容机产品为使用 0.15kg 胶水,则 4000 台美 容机产品使用胶水量为 0.6t/a。

表 2-6 本项目使用的涂料、固化剂、稀释剂的主要成分及占比

	喷漆 原材 料	有机挥发份	有机挥发份 占比	固体份	固体份 占比	密度(g/cm³)
	水性底漆	轻芳烃溶剂石脑油 (石油)4-10%/1,2,4- 三甲苯 1-10%, 1-丁 氧基-2-丙醇 1-10%	30%	滑石 10-25%,碳酸钙 10-25%,聚丙烯酸酯树脂 1-10%	60%	1.43
*	水性面漆	2-丁氧基乙醇 1~ 10%、二甘醇一丁醚 1~10%	20%	环氧树脂 20-30%、 颜料 20-30%。	60%	1.26
	油性底漆	二甲苯异构体混合物 10~25%、正丁醇 1~ 10%、乙苯 1~10%	45%	环氧树脂 10~ 25%、硫酸钡 10~ 25%、磷酸锌 1~ 10%	55%	1.25
			30			

					,007		
		油性面漆	乙酯 20%、助剂(己 二醇)20% 、丁酯 10% 、二甲苯 5%	55%	醇酸树脂 27%、透明粉 8%、哑粉 5%、滑石粉 5%。	45%	0.9
	y	水性固化	企酸(1,2-丙二醇) 酯 25-40%	40%	1,6-二异氰酸根合 己烷的均聚物 25-40%、亲水异氰 酸酯基均聚物 10-25%	45%	1.08
ALLY Y	*	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	乙酸正丁酯 25-40%、轻 芳 烃 溶 剂 石 脑 油 10-20%、1,2,4-三甲基苯 10-20%	75%	1,6-二异氰酸根合 己烷均聚物 25-40%	25%	0.96
		稀释剂	乙酸正丁酯 25-40%、 二甲苯异构体混合物 10-25%、乙酸-1-甲氧 基-2-丙基酯 10-25%、 轻芳烃溶剂石脑油 10-25%、乙酸乙酯 1-10%、1,2,4 之甲基 苯 10-20%、乙苯	100%		0	0.88

配后的涂料, VOCs 含量=Σ[原料中 VOCs 含量×该物质在油漆中所占比 固含量%=Σ[原料中固体组分含量×该物质在油漆中所占比例];涂料调配后 的密度根据调配原辅材料的密度以及调配比例进行计算,

大二十分 03.0.08,油 计算出调配层的油漆组分如 表 2-7 调配后涂料主要参数汇总表 根据水性油漆:水性固化剂:水=1:00300.08,油性油漆:油性固化剂:稀 释剂=1:0.5:0.25 的配比,可计算出调侃局的油漆组分如下表 2-7 所示。

类别	调漆比例	//VOCs	含量	固含量	密度
一	阿 探 LL [7]	(%)	(g/L)	(%)	(g/cm ³)
水性底漆	水性油漆:水性固化剂:水	28	391	55	1.39
水性面漆	=1:0.03:0.08	19	236	55	1.24
油性底漆	油性油漆: 油色固化剂: 稀释剂	61	684	39	1.11
油性面漆	∃ 1:0.5:0.25	67	614	33	0.91

表可知,调配后的水性底漆 VOCs 含量为 391g/L,符合 有害物质限量(GB30981-2020)》水性涂料中工业防护涂 他-喷涂)最低限值≦400g/L 的要求。

调配后的水性面漆 VOCs 含量为 236g/L,符合《工业防护涂料中有害物质 限量(GB30981-2020)》水性涂料中工业防护涂料 低限值≦400g/L的要求。

调配后的油性底漆 VOCs 含量为 684g/L,符合《工业防护涂料中有害物质 限量(GB30981-2020)》溶剂型涂料中工业防护涂料(包装涂料-其他-喷涂) 最低限值≦750g/L的要求。

调配后的油性面漆 VOCs 含量为 614g/L, 符合《工业防护涂料中有害物质》 限量(GB30981-2020)》溶剂型涂料中工业防护涂料(包装涂料-其他-喷涂 最低限值 ≤ 750 g(L)的要求。 根据《涂装工艺与设备手册》中涂料消耗量计算公式: $m = \rho \delta s \eta \cdot 10^{-6} / (NV \cdot \varepsilon)$ 其中:m——油漆某组分用量,t/a; ρ ——该油漆密度, g/cm^3 ; δ ———。涂法面积, m^2 ;n———·该油漆组份所占油漆比例:

$$m = \rho \delta s \, \eta \cdot 10^{-6} \, / (NV \cdot \varepsilon)$$

ARE VALUE

-该油漆组份所占油漆比

—油漆中的固体份含了

根据水性油漆:水性固化剂:水=1:0.03:0.08,则水性油漆组份所占油漆比例 η 为 $1\div$ (1+0.03+0.08)=0.9。

根据油性油漆:油性固化剂:稀释剂=1:0.5:0.25,则油性油漆组份所占油漆比例 η 为 $1\div$ (1+0.5+0.25)=0.57。

项目产品灯箱外壳不需要喷漆,只有美容机的外壳 4000 台需要喷漆。其中大约 3500 台使用水性漆,500 台使用油性漆。每个产品需喷 2 层油漆,含 1 层底漆和 1 层面漆。

根据美容机的规格尺寸 1000×600×500mm, 共有 5 个面需喷漆, 则计算出 需喷漆的表面积为: 1×0.6×2+1×0.5×2+0.6×0.5×1=2.5m²。

油漆类型	喷漆层数	单位产 品喷漆 面积 (m²)	总产 能 (台 /个)	単层喷 漆厚度 (μm)	油漆组 份所占 油漆比 例(η)	涂料湿密 度(g/cm³)	附着 率(%)	固含 率 (%)	使用量 (t/a)
水性底漆	1	2.5	2500	60	0.9	0139	70	55	1.71
水性面漆	1	2.5	3500	50	0.9	1.24	70	55	1.27
油性底漆	1	2.5	70	60	0.57	1.11	75	39	0.16
油性面漆	1		2905	50	0.57	0.91	75	33	0.13

表 2-8 项目油漆使用量核算一览表

根据水性油漆:水性固化剂:水=1:0.03:0.08,则项目水性固化剂用量为71+1.27)×0.03=0.09t/a,所需水用量为(1.71+1.27)×0.08=0.24t/a。

根据油性油漆:油性固化剂:稀释剂=1:0.5:0.25、则项目油性固化剂用量为 $(0.16+0.13) \times 0.5=0.15$ t/a,稀释剂用量为 $(0.16+0.13) \times 0.25=0.07$ t/a。

4、生产设备

ARIVA NA

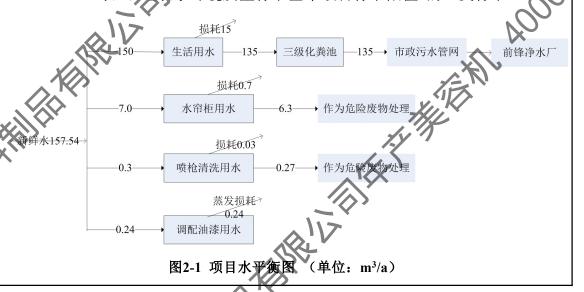
本项目所用的设备均不涉及辐射类设备,使用的所有设备均使用电能,无 其它能源。本项目主要生产设备详见下表。

						S)	
	·				,000'	4	
		1	表 2-		设备一览表		
			设备数量	4	3	所在位	
	设备名称	迁建前 数量	迁建后 数量	变化情况	规格/型号	置	使用工序
	数控开料机	1台	1台	无变化	/	1 楼	中纤板开料 工序
	雕刻机(刀	2 台	4台	+2 台	/	1楼	ABS 板材雕 刻工序
	烤箱	130	2台	无变化	/	1楼	ABS 板材加 基工序
	吸塑机	3 台	3 台	无变化	/	1楼	ABS 板材吸 塑工序
	修边机	3 台	3 台	无变化	/	1楼和	裁边工序
	吊锣	1台	1台	无变化	/	1 楼	裁边工序
. 18	钉枪	6台	6 台	无变化	/ 1/2	3 楼	钉合工序
ARIV III	激光雕刻机	1台	1台	无变化	00,0	3 楼	亚克力雕刻 工序
SELV	锯机	1台	1台	无变化		3 楼	ABS 板材开 料工序
7	角磨机	5 台	5 台	无变化	/	3楼	ABS 板材打 磨工序
	喷枪	2 支	4支	+2 支	$0.005 m^3/h$	4 楼	喷涂工序
	水帘柜	2 个	2	无变化	4m*2m*2m 和 2.3*2m*2m	4楼	喷涂工序
	打磨台 (配套砂纸 机)	4台 17	4 台	无变化	/	4楼	打磨飞
	空压机(活塞	2 台	2 台	无变化	/	1楼	辅助设备
	成漆房	1个	1 个	无变化	3m*6m*4m	4楼	喷底漆
	面漆房	1 个	1 个	无变化	6m*8m*4m	4楼	喷面漆
N.	烘干房	1 个	1 个	无变化	3m*2.2m*4m	4 楼	烘干
	晾干房	1 个	1 个	无变化	6m*4m*4m	4 楼	晾干

本项目共有员工 15 人,不设置食堂和宿舍。年工作天数 300 天,每天一班 每班工作时间为 8 小时。 制,每班工作时间为8小时。

6、公用工程

(1) 给水


HATTER OOD TITLE 本项目用水主要来自市政自来水管网,项目年用水量约为157.54吨,主要为 生活用水、喷漆水帘柜用水、喷枪清洗用水和调配油漆用水。根据后文废水产生和 排放情况分析可知,其中生活用水量约 150 t/a,喷漆水帘柜用水量约 7.0t/a、喷枪 清洗用水量为 0.3t/a、调配油漆用水量为 0.24t/a。

AR VA

本项目的排水主要是生活污水,生活污水排放量为135吨/年。此外喷漆水帘

区实行雨污分流,雨水经厂区雨水管网收集后,排至市政雨水管网。 本项目位于前锋净水厂纳污范围内,项目洗手间废水经化粪池预处理后,再与 其他生活污水汇合,水质达到广东省地方标准《水污染物排放限值》 (DB44/26-2001) 第二时段三级标准后,通过市政污水管网汇入前锋净水厂集中 处理,最后排入市桥水道。

根据《广东省地表水环境功能区划》及《关于同意实施广东省地表水环境 (粤府函(2011) 29 号)的划分,市桥水道(番禺石壁陈头 闸~番禺三沙口大刀沙头)属于Ⅳ类水域,执行《地表水环境质量标准》 1 地表水环境质量标准基本项目标准限值"的Ⅳ类标准。

7、环保投资 根据本项目采取的环保措施并结合评价提出的治理方案,环保投资约 20 万 各项环保投资估算列于下表 元,各项环保投资估算列于下表1

表 2.10 环保投资估算一览表

			从 ₹ 1.0 × 7 1 1 1 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1								
			污染源	治理措施	单位	数 量	环保投资(万 元)				
		废水	生活污水治理	三级化粪池及污水管网	套	1	2				
			激光雕刻、吸塑有机	二级活性炭吸附装置	套	1	3/0				
		废气	喷漆、烘干废气	水帘柜+过滤棉+二级活性炭 吸附装置	套	1	K/Z 8				
		- 2	开料、打磨废气	布袋除尘器	套	K	2]			
		111	人 噪声治理	隔声减震设备	/		1	╛			
			一般固废	固废储存间	/	_>	1				
		废	生活垃圾	生活垃圾桶、垃圾袋	/	1/	1				
	/ \		危险废物	危废暂存间	/	/	2	7			
Y.	X/ \			合计	^		20	1			
	,			0,1	/		•	_			
			(三) 项目四至情况	及平面布置							
ARL Y		Г	一州博艺塑料制品有	限公司迁建后位于广州市番	禺区石	5基镇	桥山村金龙路				
		284 둑	号二栋 101、301、40	1室。其史该栋的 201 室为	家美会	金属制	品公司厂房。				
•		项目3	东侧隔 6 米为广州市	顺宏游乐设备有限公司厂房	喜. 南.	、西面	n均为厂房目均	ı			

(三) 项目四至情况及平面布置

广州博艺塑料制品有限公司迁建后位于广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室。其中该体的 201 室为家美金属制品公司厂房。 项目东侧隔6米为广州市顺宏游乐设备有限公司厂房,南、西面均为厂房且均 处于闲置状态,北面隔低等厂房为新凌路。本项目地理位置详见附图 1,项目 四至图详见附图 2。本项自总体平面布置详见附图 3。

一、工艺流程

本项目主要从事美容机和灯箱外壳的生产,美容机的生产中,外壳是通 过本项目的吸塑工序制成,其他配件则是外购品。木质包装盒为美容机和灯 箱外壳包装外盒,属于本项目产品配套的包装件,不属于主要生产产品。

包装盒生产工艺流程简述:

环节

- (3) 批灰、打磨:将腻子粉人工刷涂到中纤板的钉合拼接处,静止风在打磨台进行打磨。 干后在打磨台进行打磨。

(工艺单元/产污设施) (污" 有机废气、边角科 (物料) ANDONIA -加热、吸塑 烤箱、 吸塑机 裁边 修边机/ 吊锣 雕刻 激光雕刻机/ 拼接/组 成品。 一3.

备注:美容机外壳和灯箱外壳生产工艺流程基本相同。其中灯箱外壳完成喷漆工序后,进行包装后即形成产品;美容机的生产中,美容机外壳完成喷漆工序后,与其他外购配件进行人工组装,包装后即形成产品。

生产工艺流程简述如下

ARE VALUE OF THE PROPERTY OF T

- (1) 开料:外购ABS板材根据设计图纸用锯床进行开料。
- (2)加热、吸塑:进行真空吸塑工序前,使用烤箱对板材进行加热软化,加热温度约120~150℃;利用真空泵产生的真空吸力将加热软化后的ABS板材吸附于吸塑机的模具表面,吸塑至板材冷却成型后再从模具工取出,吸塑时间约10min。本项目吸塑板材主要是ABS板材。吸塑使用的模具均为外购,不在厂区内制作和修理。
 - (3) 裁边:利用修边机对吸塑后的半成品修裁边角。
- (4)雕刻:本项目雕刻工序是利用激光雕刻机对亚克力板材进行雕刻,激光温度高达270℃以上,1台激光雕刻机雕刻过程会产生有机废气。项目利用刀具雕刻机对裁边后的ABS板材进行雕刻,4台刀具雕刻机雕刻过程会产生粉尘。
- (5) 拼接/组装: 人工使用胶水将裁边后的吸塑半成品拼接/组装起来。 拼接/组装过程使用的胶水会挥发产生有机废气。
- (6) 打磨:利用角磨机对拼接/组装后的半成品的粗糙位置进行小面积 局部打磨、使其表面平整。打磨工序主要产生粉尘。

7、喷底漆、烘干:本项目底漆调漆工序在底漆房中进行,将外购的水性底漆加入水性固化剂和水进行调配。将外购的油性底漆加油性固化剂和稀释剂进行调配。调配好的底漆在底漆房使用喷枪进行喷涂。所有产品喷一层底漆且喷底漆厚度为60um。

喷完底漆后的烘干工序在烘干房内进行。烘干房利用电能将房内空气加 热至60℃左右,2小时后工件即烘干完毕。

- (8) 打磨: 喷完底漆烘干后在打磨台使用砂纸机进行打磨。
- (9) 喷面漆、烘干:本项目面漆调漆工序在面漆房中进行,将外购的

水性面漆加入水性固化剂和水进行调配。将外购的油性面漆加油性固化剂和稀 释剂进行调配。调配好的面漆在面漆房使用喷枪进行喷涂。所有产品喷一层面 漆且喷面漆厚度为50um。喷完面漆后的产品进入晾干房自然晾干。

(10)组装、包装:喷漆完成后的半成品与其他配件进行人工组装, 然后使用包装盒进行外包装, 灯箱外壳直接进行外包装。

喷漆后需更换油漆颜色才需对喷枪进行清洗,喷油性漆的喷枪使用稀释 剂进行清洗,油性喷枪清洗废液收集后进行调配油漆使用,循环利用不外排。 喷水性漆的喷枪使用自来水进行清洗,水性喷枪清洗废液进入喷漆水帘柜废 中,和喷漆水帘柜产生的废水一起收集作为危险废物收集处理。

(二) 营运期产污环节

ARIVA TO A STATE OF THE PARTY O

本项目营运期各类污染物产生环节详见下表。

		表 2-11 主要污染节点分析一览表										
	类别	Ý	亏染工序	主要污染物								
		ABS板开料、	刀具雕刻、打磨粉尘 废气	颗粒物								
		亚克力板》		TVOC								
	废气	吸到	望有机废气/	TVOC								
	及气	喷漆、炸	共干、晾干废气	TVOC、二甲苯、苯系物、颗粒物								
		喷漆	后打磨废气	颗粒物								
		拼接/组	快 工序有机废气	TVOC								
		中纤板东	4、打磨粉尘废气	颗粒物								
	废水	ALV 5	办公生活	pH、COD _{Cr} 、BOD₅、SS、氨氮、总磷、 总氮								
		喷漆水帘柜质	废水、喷枪清洗废水	pH、COD _{Cr} 、BOD ₅ 、 8 S、色度								
	噪声	生产	和辅助设备	各设备噪声								
		>	员工办公	办公生活垃圾								
•	固废	生产、质检	一般工业固体废物	边角料和碎屑、布袋除尘器收集到的粉尘								
			危险废物	原料废空桶、喷漆水帘柜产生的废水、喷 枪清洗废水、漆渣、废过滤棉、废活性炭								

一、与本项目有关的原有污染情况及主要环境问题

由建设单位提供的资料,原项目位于广州市番禺区大龙街茶东村东盛路 15号三座 101,租赁 1 栋二层厂房生产经营,占地面积为650 平方米,建筑面积为1300 平方米。原项目主要从事美容机和灯箱外壳的生产,年产美容机4000台、灯箱外壳 1000 个、原项目已于 2019年3月6日取得广州市番禺区环境保护局关于广州博艺塑料制品有限公司年产美容机4000台、灯箱外壳 1000个建设项目环境影响报告表的批复,审批文件为穗(番)环管影 2019)75号。原项目已于 2019年6月18日取得广州博艺塑料制品有限公司年产美容机4000台、灯箱外壳 1000个建设项目竣工环境保护验收工作组意见。且原项目已经取得排污登记回执,登记编号为: 91440101MA5CJPXGX4001Y。

1、原项目主要的工艺流程

迁建前和迁建后生产产品的工艺流程相同

2、原项目产排污情况及已采取的污染防治措施

(1) 废水

原有项目主要外排的废水为员工生活污水。生活污水经三级化粪池预处理达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后排入市政污水管网,经市政污水管网排入前锋净水厂进行处理,尾水最终汇入市桥水道。

(2) 废气

原有项目产生的主要废气及污染防治措施包括:喷漆有机废气和打磨废气先经水帘柜预处理后,再与负压收集的其他有机废伤、调漆、烘干有机废气)一并经'过滤棉+活性炭吸附"处理后于15m高排气筒排放。激光雕刻、吸塑产生的有机废气收集后经活性炭吸附处理于15m高排气筒排放。ABS板开料废气收集后经布袋除尘器收集处理后在车间内以无组织形式排放;雕刻粉尘废气收集后经设备自带的一体式除尘装置收集处理后在车间内以无组织形式排放;中纤板开料、打磨粉尘废气收集后经布袋除尘器处理后在车间内以无组织形式排放;中纤板开料、打磨粉尘废气收集后经布袋除尘器处理后在车间内以无组织形式排

与项

关的 原有

环境 污染

问题

41

放;拼接/组装产生的有机废气在车间内以无组织形式排放。

(3) 噪声

建设单位通过选用低噪型的生产设备,并合理布局噪声源,并对噪 声源采取有效的隔声、减振措施,有效阻隔了生产设备产生的噪声,经处 理后厂界噪声可达到《工业企业厂界环境噪声排放标准》(GB 12348-2008) "表1 工业企业 界环境噪声排放限值"的3类标准,对周围环境影响不

(4) 固体废物

AR IV

, 生的生活垃圾交由环卫部门统一清运处理;一般固体废物(边角 14碎屑、布袋除尘器收集到的粉尘)交由资源回收公司处理、危险废物(原 料废空桶、喷漆水帘柜产生的废水、喷枪清洗废水、漆渣、废过滤棉、废活 性炭)暂存于危废暂存间,定期交由有危废处理资质单位回收处置。

原有项目环保手续齐全, 已经按照原环境影响评价文件及其批复的要求 落实了各项污染防治措施,污染物经处理后均可实现达标排放,未对周围环 境造成污染影响。

3、迁建项目场地环境现状及环境问题

广州博艺塑料制品有限公司迁至广州市番禺区石基镇桥山村金龙路 284 号二栋 101、301、401 室, 所租赁的 3 层厂房目前均为空厂房, 迁建项目所 在场地无污染和其它环境问题。

区域环境影响

项目位于广州市番禺区石基镇桥山村金龙路 284 号 境问题 项目周边区域主要为一些工业厂房,主要环境问题为周边工

三、区域环境质量现状、环境保护目标及评价标准

1、环境空气质量现状

(1) 基本污染物环境空气质量现状

根据《广州市环境空气功能区区划(修订)》(穗府[2013]17号)的划分,本项目所在地属于环境空气二类功能区,功能区质量适用《环境空气质量标准》(GB3095-2012》及其2018年修改单中"表1环境空气污染物基本项目浓度限值"的二级浓度限值要求。根据《2023年广州市生态环境状况公报》,广州市番禺区 2023年未能实现空气质量六项指标全面达标(表3-1),超标项目为臭氧。2023年番禺区环境空气质量见下表:

表 3-1 2023 年番禺区环境空气质量主要指标

	污染物	年评价指标	现状浓度/	标准值/	占标率	达标情况	
	137612	יניים נועות ואו	$(\mu g/m^3)$	$(\mu g/m^3)$	/%	201111111	
	SO_2	年平均质量浓度	6	60	10.0	达标	
	NO_2	年平均质量浓度	30	40	75.0	达标	
	PM_{10}	年平均质量浓度	(A)	70	60.0	达标	
	PM _{2.5}	年平均质量浓度	22	35	62.86	达标	
	CO	第95百分位数日平均	900	4000	22.5	达标	
l		浓度/mg/m³				2	
	O_3	第90百分位数日最大 8h平均浓度	169	160	105.6	不达标	

由上表**可**知,番禺区 SO₂、NO₂、PM₁₀、PM_{2.5}年平均质量浓度、CO 95 百分位数日来均质量浓度可达到《环境空气质量标准》(GB3095-2012)及 2018年修改单中二级标准要求,O₃90 百分位数日最大 8 小时平均质量浓度超过《环境空气质量标准》(GB3095-2012)及 2018年修改单中二级标准要求,占标率为 115.0。综上,本项目所在区域判定为不达标区、

根据《广州市人民政府关于印发广州市环境空气质量达标规划(2016-2025年)的通知》,通过优化产业结构和布局、推进能源结构调整,深化机动车船等移动污染源污染控制,加快推进挥发性有机化合物综合整治、提高扬尘管理水

域环境质量现状

平等战略控制,中远期 2025年,本项目所在区域不达标指标 O₃90 百分位数平 均质量浓度预期可达到小于 160ug/m2 的要求,可满足《环境空气质量标准》 (GB3095-2012)及其修改单中二级标准要求。

(2) 其他特征污染物现状监测

根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》 和《〈建设项目环境影响报告表〉内容、格式及编制技术指南常见问题解答》 "排放国家、地方环境空气质量标准中有标准限值要求的特征污染物时。引用建 设项目周边5千米范围内近三年的现有监测数据,无相关数据的选择当季主导 风向下瓦向1个位点补充不少于3天的监测数据"。本项目委托方 **3**于 2024 年 11 月 16 日~18 日连续 3 天对 G1(大龙村)进行采样监测的 数据,来评价项目周围的环境空气质量状况。监测报告见附件5,监测点位基 本信息如表 3-2 所示。

_		,,,	- 14	74 11 2 Ball \$1.	A DEED IN IN INCHES		
		监测点	(坐标			相对	相对厂
l	监测点名称			监测因子	检测时段	厂址	界距离
l		X	Y	· KI		方位	/m
	大龙村	113.423180	22.966441	TSP、 TVOC、 苯、甲苯、 二甲苯、 苯乙烯、 丙烯腈	2024.11.16~11.18	西南面	1183

表 3-2 特征污染物补充监测点位基本信息表

项目监测指标 TSP 评价标准为《环境空气质量标准》(GB 3095-2012)二 级标准及其修改单,TVOC、苯、甲苯、二甲苯、苯乙烯、丙烯腈评价标准参考 影响评价技术导则 大气环境》(HJ 2.2—2018) 附录 D 其他污染物空气 农度参考限值。特征污染物环境质量现状监测结果表如表 3-3 所示。

表 3-3 特征污染物环境质量现状监测结果表

监测点 名称	污染物	平均时间	评价标准 (µg/m³)	监测浓度范围/ (μg/m³)	最大浓度 占标率/%	超标率	达标情 况
大龙村	TSP	日平均	300	106-126	42.0	0	达标
人龙们	TVOC	8h 平均	600	166-175	29.2	0	达标
	X,	が開業	44				

				HA			
	苯	1 h 平 均	110	ND	0	0	达标
	甲苯	1 h 平 均	200	ND	0	0	达标
	二甲苯	1 h 平	200	ND	0	0	达标
	苯乙烯	均均	10	ND	0	0	送称り
\	丙烯腈	1 h 平 均	50	ND	0	0	达标

注、检测结果小于检出限或未检出时,以"ND"表示。

根据上表监测结果可知,环境空气质量监测指标 TSR 满足《环境空气质量 ARE IN (GB 3095-2012) 二级及其修改单标准,监测指标 TVOC、苯、甲苯、 二甲苯、苯乙烯、丙烯腈满足《环境影响评价技术导观、大气环境》(HJ 2.2—2018) 良好。

2、地表水环境质量现状

项目所在地区属于前锋净水厂集污范围(附件4),排水已经接驳市政污 水管网,最终受纳水体为市桥水道。根据《广东省地表水环境功能区划》及《关 于同意实施广东省地表水环境功能区划的批复》(粤府函〔2011〕29 号)的划 分,市桥水道(番禺石壁陈头闸~番禺三沙口大刀沙头)属于Ⅳ类水域 (GB 3838-2002)"表 1 地表水环境质量标准基本项 目标准限值"的IV类标准。

了解本项目所在地表水环境质量现状,本评价引用中国环境监测总站国 以地表水水质数据发布系统发布的2024年7月、8月。 (数据截图见附件5),统 监测数据中珠江广州段-大龙涌口断面水质监测数据 计见下表。

市桥水道大龙涌口断面水质监测结果一览表

监	监测项	监测结果 mg/L 水质	执行标准	标	达							
45												
45												
	X											

							1	NO TO TO THE PART OF THE PART		
		测	目				现状		准	标
		断		2024.7	2024.8	2024.9	类别		限	情
		面				-KA	-//		值	况
			水温 (℃)	29.5	30.1	3014			/	/
			电导率	21.1	19.8	21.8			/	/
			浊度	63.8	32.1	35.8			/	2
			pH 值 (无量 ↓ 纲)	1000	7	7			6-9	达标
		大龙	溶解氧	5.9	5.6	5.4	III类	《地表水环境质量标准》	≥3	达标
	75	涌	高锰酸 盐指数	1.8	1.8	1.6	加夫	(GB3838-2002)N类标准	≤ 10	达 标
_Υ.			COD	12	_	_		VZ>-	≤ 30	达标
AIV			BOD	0.2	_	_			≪6	达 标
SE			氨氮	0.05	0.04	0.05		•	≤ 1.5	达标
?			总磷	0.065	0.077	0.075	N,		\leq	达
					7,	1/2			0.3	标

根据发布信息,市桥水道水质主要污染物指标 COD_{Cr}、氨氮、总磷等稳定 达标,总体良好,满足《地表水环境质量标准》(GB3838-2002)IV类标准。

3、声环境质量现状

本项目所在厂房周边 50 米范围内无声环境保护目标,因此不进行声环境质量现状监测及评价。

4、生态环境质量现状

根据对建设项目现场调查可知,项目附近以城镇生态景观为主,城镇生态

环境较好,附近没有生态敏感点,无国家重要自然风景区或较为重要的生态系统,不属于珍惜或濒危物种的生境或迁徙走廊,无生态环境保护目标,因此本报告不进行生态现状调查。

5、电磁辐射环境质量现状

本项目不属于电磁辐射类项目,不作电磁辐射现状监测和评价。

6、地下水、土壤环境质量现状

本项目场地范围内均进行硬底化处理,本项目不存在土壤、地下水污染途径,因此本评价不开展地下水、土壤环境质量现状评价。

(一) 大气环境保护目标

环

境

保

护

目

本项目厂界外 500m 范围内大气环境保护目标见下表 3-5, 保护目标分布情况详见附图 9。

表 3-5 大气环境敏感点一览表

						All .		
序		坐板	₹/m	保护。		环境	┺ ╋ ┺ ╋ ┺	相对本项目厂界
F 号	名称	X	Y	対象	内容	功能区	相对厂址 方位	田内本典日)介 距离/m
1		72	106	学校	约 500 人	大气二 类区	东北面	129
2	桥山学 校 🏡	39	393	学 校	约 500 人	大气二 类区	东北面	395
3	桥山村	-80	376	村庄	约 300 人	大气二 类区	西北面	384
	石基镇 社区卫 生服务 站	-202	109	卫生站	约20人	大气二 类区	西北面	196

备注: 以项目厂界东北角为原点,环境保护目标坐标取距离项目厂界最近点位置。

(二) 声环境保护目标

本项目厂界外 50m 范围内无声环境保护目标。

(三)地下水环境保护目标

本项目厂界外 500m 范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

(四) 生态环境保护目标

本项目所在厂房用地均已经进行了地面硬化,不涉及生态环境保护目标。

(一) 水污染物排放标准

本项目属于前锋净水厂纳污范围。办公生活污水经三级化粪池预处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二边段三级标准后排入市政污水管网。尾水排入市桥水道。项目水污染物排放限值执行标准详见下表。

表 3-6 项目水污染物排放标准 单位: mg/L, pH 为无量纲

排放标准	pН	COD _{Cr}	BOD ₅	SS NH ₃ -N	LAS	总磷	总氮	色度
DB44/26-2001								
第二时段三级	6~9	≤500	≤300	≤400 /	≤20			
标准								

(二) 大气污染物排放标准

(1) 粉尘废气排放标准 /

喷漆后打磨粉尘,AB3 板并料、雕刻、打磨粉尘,中纤板开料、打磨粉尘排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段颗粒物无组织排放监控点浓度限值:颗粒物≤1.0 mg/m³。

(2) 激光雕刻有机废气、吸塑有机废气排放标准

表 3-7 激光雕刻有机废气、吸塑有机废气污染物排放限值

污染物	排放限值(mg/m³)	企业边界排放限值(mg/m³)
非甲烷总烃	60	4.0
苯乙烯	20	/

丙烯腈	0.5	/
1,3-丁二烯	1.0	/
甲苯	8-	0.8
乙苯	50	/
丙烯酸	10	/
丙烯酸甲酯	20	/
丙烯酸丁酯	_ 20	/
甲基丙烯酸甲酯	50	/

(3) 喷漆废气排放标准

本项目调漆、喷漆、烘干、晾干产生的 TVOC 和苯系物废气排放执行 东省固定污染源挥发性有机物综合排放标准》(DB44/2367-2022) 性有机物排放限值"。

调漆、喷漆、烘干、晾干产生的二甲苯、漆雾排放执行广东省地方标准《大 气污染物排放限值》(DB44/27-2001)第二时段 级标准要求。

表 3-8	喷漆废气污染物排放限值
1 J-U	

	> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		
标准来源	污染物	最高允许 排放浓度 mg/m³	20m 最 高允许 排放速 率 kg/h	无组织排放 浓度 mg/m³
《广东省固定污染源挥发性	TVØC	100	/	/
有机物综合排放标准》	NMHC	80	/	/
(DB44/2367—2022) 排放 限值	苯系物	40	/	/
广东省地方标准《大气污染物	颗粒物	120	4.8(2.4)	1.0
排放限值》(DB44/27-2001)	二甲苯	70	1.4 (0.7)	1.2

备注: 本项目排气筒的排放高度均为 20米, 达不到高出周围 200 半径范围的最高建筑 5m以上要求, 按相对应排放速率限值的 50%执行。

(4) 恶臭气体

ARIVA INTERNATIONAL PROPERTY OF THE PROPERTY O

物排放标准值。 界标准值二级新改扩建标准及表 2 恶臭

表 3-9 恶臭气体排放标准

污染物	排气筒高度(m)	排放标准值	厂界标准值								
苯乙烯	20	12kg/h	5.0mg/m^3								
臭气浓度	20	(2000 (无量纲)	20 (无量纲)								
	_1										
	(H)										
	*-X	49									

总量控制指

ARIVE AREA

本项目厂区内 NMHC 无组织排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表3 厂区内 VOCs 无组织排放限值。

表 3-10 厂区内 VOCs 无组织排放限值

* -	- X - 1 K- X	, , , , , , , , , , , , , , , , , , ,	
标准来源	1/2,	污染物	无组织排放浓度 mg/m³
E污染源挥发性₹ (DB44/ 2367←2	> I	NMHC (厂区内)	6(监控点处1小时平均浓度值) 20(监控点处任意) 一次浓度值)

(三) 环境噪声排放标准

富多期项目厂界噪声执行《工业企业厂界环境噪声排放标准》 \$\mathbb{G}\mathbb{B}\mathbb{1}\mathbb{2}\mathbb{3}\mathbb{4}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{A}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{B}\mathbb{A}\mathbb{A}\mathbb{A}\mathbb{A}\mathbb{A}\mathbb{A}\mathbb{B}\mathbb{A}\math

(四) 固体废弃物控制标准

一般工业固体废物在厂区内采用库房或包装工具贮存,贮存过程满足相应 防渗漏、防雨淋、防扬尘等环境保护要求。危险废物执行《危险废物贮存污染 控制标准》(GB18597-2023)。

(1) 水污染物排放总量控制指标

本项目已接通前锋净水厂,废水通过市政污水管网引至前锋净水厂处理, 其总量将从前锋净水厂总量中调配。

本项目以 CODcr和氨氮的达标排放量作为总量控制指标,其总量将从前锋净水厂总量中调配。根据广州市生态环境局 2021 年 6 月更新发布的广州市重点排污单位环境信息(来自广州市生态环境局网站"政务公开一重点排污单位环境信息"栏目),2020 年度前锋净水厂排放口 CODcr年度平均排放浓度为 10.0 mg/L,氨氮年度平均排放浓度为 0.45 mg/L;根据污水排放浓度平均值计算,本项目水污染物排放总量控制指标如下:

表 3-11 本项目水污染物总量控制指标 (单位: t/a)

废水类型	废水量 (m³/a)	COD _{Cr}	NH ₃ -N
生活污水	135	0.00135	0.00006

(2) 废气污染物排放总量控制指标

50

。非效量为0.203Wa(有组织排放量。如中语TVOC总量指标为0.102Wa。

《鱼羚刺精标 自行处理排放。所以不设置同体废物总量控制指标。

《白红沙珠· 新以不设置同体废物总量控制指标。 表表表的。 是是是一种。 是是是一种。 是是是一种。 是是一种。 是一种。 是一一种。 是一一种。 是一一种。

。生产,確工期仅为生产设备的变变,其产生的变化。 Apple App J. J. Like to the state of the

		一、废 l、大 [⁄]	气污染物	排放总』		制指标	300177-	K K	-) \						9 - *			
				1//		表 4-	1 本项目废气		強核算年	治理	里措	参数	(一览表	污染物排	 放		排	
运营期环	<u> </u>	装置	污染源	污染 物	核算方法	废气产 生量/ (m³/h)	产生浓度 /(mg/m³)	产生速 率/ (kg/h)	产生 量/ (t/a)	I		核算方法	废气排 放量/ (m³/h)	排放浓度 /(mg/m³)	排放速 率/ (kg/h)	排放 量/ (t/a)	放 时间 /h	1000
境影响和保护措施	雕刻、	激光雕刻机吸塑	有组织 排放 (排气 筒 FQ-01)	NMH C	产污系数法	10000	4.125	3 041	0.099	二级活性炭吸附处理	88	排污系数法	10000	0.495	0.005	0.012	240 0	
	人	机 机	无组织 排放	NMH C	*		/	0.005	0.011	厂房通风	/	,			0.005	0.011		
	调漆、	喷枪	有组织 排放	TVO	产 污	20000	24. 969	0. 499	1. 199	水帘	90	排污	20000	2. 573	0.051	0. 123	240	

								-	K	-)						-%			
Γ		喷漆、		(排气 筒	二甲苯	系数		1.200	0. 024	0. 058	柜 +	88	系数		0. 144	0.003	0. 007		
	1 1	烘 干、		FQ-02)	苯系 物	法		5. 663	0. 113	0. 272	过滤	88	法	الم	0.680	0. 014	0. 033		
		晾干、拼接组装			颗粒物			9. 788	0. 196	0. 470	棉+二级活性炭	96 VZ		Z KA	0. 392	0.008	0.019		00/-X
			(Q)	7	TVO C		/	/	0.066	0. 159	加加	/		/	/	0.066	0. 159	1//	
		K		无组织	二甲苯		/	/	0.003	9. 006	强	/		/	/	0.003	0.006		
- 17		.		排放	苯系 物		/	1 1/2	0,013	0. 030	房通	/		/	/	0. 013	0.030		
大排門木木					颗粒 物		/		0. 022	0.052	凤	/		/	/	0.022	0.052		
		AB S 板 开 料 雕 刻、中	锯机雕刻机角磨	无组织 排放	颗粒物	产污系数法			0.0086	0.0206	设备自带布袋除	/	排污系数法	W. C.	Y YOU	0.0086	0.0206	240	
				NA STATE OF THE ST	Š.				5	4	[Q	13							-

机、 尘 开 板 开 料 置 料、 机、 打 磨、 喷 表42 项目排气口设置 漆 后

	后打磨		放口基本情况 排放口基本情况		表 4	2 项目排气口	1设置			
-X	序号	排污口编号	排污口名称	污染物	高度 (m)	内径(m)	流速	排放口基本情况 温度(℃)	坐标	排放口类型
AN STREET	1	FQ-01 排气筒	雕刻、吸塑有 机废气排放 口	NMHC	20	0.48	(m/s)	25	N22.977179, E113.422655	一般排放口
X- '	2	FQ-02 排气筒	调漆、喷漆、 烘干、晾干、 拼接/组装	TVOC 三甲苯系物、颗粒物	20	0.68	15	25	N22.977182, E113.422530	一般排放口
			行监测计划					THE STATE OF THE S		
		A A A A A A A A A A A A A A A A A A A	ARK-ART			55	V			

根据《固定污染源排污许可分类管理名 (2019 年版)》,项目属于简化管理,项目废气排放口属于一般排放口。结 合项目运营期间污染物排放特点,根据《排污许可证申请与核发技术规范 总则》(HJ942-2018)、 《排污许可证申请与核 发技术规范 橡胶和塑料制品工业》 (HJ1122—2020)、《排污单位自行监测技术指南 涂装》 (HJ1086-2020) 制定本项 目的大气污染源监测计划,建设单位需保证按监测计划实施。监测分析方法按照现行国家、部颁标准和有关规定执行。本 项目大气污染物自行监测计划如下:

表 4-3 项目监测计划表

类别	监测地点	监测项目	监测频率	执行标准
	排气筒 FQ-01	非甲烷总烃、苯乙烯、 丙烯腈、1,3-丁二烯、甲 苯、乙苯、丙烯酸、丙 烯酸甲酯、丙烯酸丁酯、 甲基丙烯酸甲酯	1 次/年	《合成树脂工业污染物排放标准》(GB31572-2015)表5大气污染物特别排放限值
		苯乙烯、臭气浓度	1 次(年)	《恶臭污染物排放标准》 (GB14554-93) 表 2 恶臭污染物排放标准值
废气		NMHC、TVOC、苯系物	次作	《广东省固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)"表 1 挥发性有机物排放限值"
	排气筒 FQ-02	二甲苯	1 次/年	广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二
		颗粒物	1 次/年	级标准 🗸
		臭气浓度	1 次/年	《恶臭污染物排放标准》 (GB14554-93) 表 2 恶臭污染物排放标准值
	厂区内	NMHC	1 次/年	广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 万区内 VOCs 无组织排放限值

			17	
		二甲苯	1次/半年	广东省地方标准《大气污染物排放限值》(D841/27-2001)第二时段无
		颗粒物	1 次/半年	组织排放监控浓度限值
	厂界	NMHC、甲苯	1 次/半年	《合成树脂工业污染物排放标准》(GB31572-2015)表9 厂界大气污染物 浓度限值。
		苯乙烯 、臭气浓度	1 次/半年	《恶臭污染物排放标准》 (GB14554-93) 表 1 恶臭污染物厂界标准值二 级新改扩建标准

Arren ... ARTONATA

ARTON

5 期,环境影响和保护措施

运

4、污染源源强分析

(1) 废气产生情况

本项目的废气主要来自亚克力板激光雕刻有机废气,吸塑有机废气,喷漆有机废气和漆雾,喷漆后打磨粉尘,ABS 板开料、雕刻、打磨粉尘废气,中纤板开料、打磨粉尘废气,拼接/捏装工序有机废气。

①亚克力板激光雕刻有机废气(有组织)

本项目使用的亚克力板材又称有机玻璃,主要成分为聚甲基丙烯酸中酯,属于塑料的、种。其在激光雕刻过程会有一定量的有机废气及轻微的气味产生,主要污染因子为非甲烷总烃、丙烯酸、丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸甲酯等特征污染物主要考虑物料中残留单体的挥发,整体产生量极少,此次评价过程中仅做定性分析。本项目激光雕刻工序中,激光温度高达270℃以上、达到亚克力板热分解温度。亚克力板主要为产品的装饰材料,激光雕刻过程中,激光接触的部分均受热分解成有机废气。项目使用亚克力板材808m²、激光雕刻面积约占50%为404m²,激光雕刻深度为0.01mm。亚克力板材的平均厚度为5mm,则计算出激光雕刻部分占板材用量的0.1%。本项目亚克力板年用量为5吨,则亚克力板激光雕刻时非甲烷总烃的产生量为0.005t/a。

②吸塑有机废气(有组织)

 苯等特征污染物主要考虑物料中残留单体的挥发,整体产生量极少,此次评价过程中仅做定性分析。由于本项目所使用的 ABS 板为板材,无塑料颗粒投料和混料工序,所以吸塑成型过程无粉尘逸出。

根据《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号) 2929 塑料零件及其他塑料制品制造行业系数表,吸塑工序产生的废气排放系数接 1.9kg/t 产品计算。本项目 ABS 板材的产品用量为 55t/a ,则非甲烷总烃的产生量为 0.105t/a。

③喷漆有机废气和漆雾(有组织)

本项目调漆、喷漆、烘干晾干过程均会有一定量的有机废气、含漆雾)产生,主要污染因子为TVOC、二甲苯、苯系物、颗粒物。本项目烘干工序使用电作为能源,没有燃料废气产生。由于调漆、喷漆和烘干晾干产生的有机废气统一收集处理,因此本报告将调漆、烘干晾干过程产生的废气纳入喷漆废气中一并计算。根据前文分析可知,各涂料、固化剂、稀释剂成分中主要污染物占比及产生量情况如表4-4 所示。

表 4-4 本项目各涂料、固化剂、稀释剂成分中主要污染物占比及产生量情况

	~~·	· /I ·· // []	1001/11 1 PEG	דונאון זי נונטו	713/20/23 1	X17/KIXI	1000/工工工		
喷漆	₹原材料	年用量 (t/a)	TVOC 成 分最大含 量	TVOC 最大 产生量 (t/a)	二甲苯成分 最大含量	二甲苯最大 产生量 (t/a)	苯系物成分 最大含量	苯系物最大 产生量 (t/a)	
水	性底漆	1.71	30%	0.513	0	0	10%	0.171	
水	性面漆	1.27	20%	0.254	0	0	0	MOD	
油	性底漆	0.16	45%	0.072	25%	0.04	35%	0.056	
油	性面漆	0.13	55%	0.0715	5%	0.0065	15%	0.0065	
水性	固化剂	0.09	40%	0.036	0	0	0	0	
油性	固化剂	0.15	75%	0.1125	0	0	20%	0.03	
稀	解剂	0.07	100%	0.07	25%	0.0175	55%	0.0385	
	合计	3.58	/	1.129		0.064	/	0.302	

苯系物按照项目所有喷漆原料中的乙类。二甲苯以及三甲苯最大占比之和计算。由上表可知,本项目调漆、喷漆、从于晾干工序 TVOC 的产生量为 1.129t/a,

二甲苯 0.064t/a, 苯系物 0.302t/a。

水性油漆的附着率按70%计算,油性油漆的附着率按75%计算。未附着在工 件上的油漆的固体成分会形成漆雾,主要为颗粒物。本项目使用涂料的固含率及 漆雾产生情况如下表所示。

	4	区4-77-49日使用研	"科四百华及你务)"	上月九
	涂料品种	固含率(%)	年用量(t/a)	漆雾产生量(t/a)
	水性底漆	60	1.71	0.257
	水性面漆	60	1.27	0.191
	油性底漆	55	0.16	0:031
	油性面漆	45	0.13	0.020
	水性固化剂	45	0.09	0.010
Y	油性固化剂	25	0.15	0.013
	稀释剂	0	800	0
VIV	合计	/	3,58	0.522
180	由上表可知,本	x项目喷漆工序漆 》	产生量为 0.522t/a	1.0
(④拼接/组装有机	几废气(有组织)	5	

④拼接/组装有机废气(有组织)

本项目 ABS 板材部分位置需要使用胶水进行拼接组装,会产生少量有机废 气,拼接/组装过程无需加热,冷压即可获得良好的粘接强度。根据前文分析可知, 使用的胶水有机挥发成分占比为38%,本项目胶水的使用量为0.6吨,则拼装工序 TVOC 的产生量为 0.6×38%=0.228t/a。该废气拟使用集气罩收集后和喷漆废气 进入二级活性发吸附装置处理后于 20 米高排气筒排放(排气筒编号: FQ-02)。

⑤喷漆后打磨粉尘(无组织)

项目喷完底漆并经烘干后的工件需对局部不平的位置人 整光滑,有利于后续面漆加工。人工打磨过程会产生少量含尘气体,污染因 子为颗粒物。根据本项目的打磨加工量情况,本项飞喷漆后打磨的粉尘产生量以 底漆层固含量的3%进行估算,则打磨工序粉尘产生情况见下表。

表 4-6 本项目喷漆后打磨粉尘产生情况

涂料品种	固含率	年用量(t/a)	上漆率	粉尘产生量(t/a)
		V 14		

水性底漆	60%	1/1/2	70%	0.022
油性底漆	55%	0.16	75%	0.002
水性底漆固化剂	45%	0.09*0.5=0.045	70%	0.0004
油性底漆固化剂	25%	0.15*0.5=0.075	75%	0.0004
底漆稀释剂	179-	0.07*0.5=0.035	75%	0
合计	OV	2.025	/	0.024

综上所述, 本项目打磨粉尘产生量为 0.024t/a。

(2023年修订版)表 参考《《东省工业源挥发性有机物减排量核算方法》 3.3-2 废气收集集气效率参考值,废气收集方式为单层密闭负压,观废气收集效率 90%(现以90%计算)。砂纸机设备配有吸尘装置,在打磨工位处设置抽吸 口对打磨粉尘废气进行负压抽吸收集,废气收集效率可达90%(现以90%计算), 打磨粉尘废气收集后经设备自带集尘装置 (布袋除尘器) 处理后在车间内以无组 织形式排放。参考《排放源统计调查产排污核算方法和系数手册》 年第24号)2110 木质家具制造行业系数表,袋式除尘效率可达90%,本项目以 90%计算,则喷漆后打磨粉尘排放量为0.0022t/a。

⑥ABS 板开料、雕刻、打磨粉尘废气(无组织排放)

本项目使用锯机对ABS 板进行开料的过程中会产生ABS 板碎屑,其中大部分 为粒径较大的ABS 板颗粒,其容易沉降于地面可直接收集,小部分为粒径较人 的颗粒(粉尘)。根据原有项目生产统计资料可知,ABS 板开料时粉尘产生量约 为 ABS 板用量的0.1%, 本项目 ABS 板使用量为55t/a,则粉尘产生量为0.055t/a。 本项目计划在锯机下方设置抽吸口对开料粉尘废气进行负压抽吸收集, 省工业源挥发性有机物减排量核算方法》(2023年修订版》表 3.3-2 废气收集 ·效率参考值,废气收集方式为单层密闭负压,则废气收集效率可达90%(现 以 90%计算)。开料粉尘废气收集后经布袋除尘器处理后在车间内以无组织形式 排放。根据《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号) 2922 塑料板、管、型材制造行业系数表,袋式除尘效率可达 99%,本项目 保守以95%计算,则ABS 板开料粉尘排放量为0.0025t/a。

本项目部分产品需按客户要求雕刻出相应的花纹或文字,刀具雕刻机对ABS 板进行雕刻过程会产生雕刻粉尘像气,主要污染物为颗粒物。本项目年雕刻ABS 板约55吨,根据原有项目生产统计资料可知,每块板产生的粉尘质量约为ABS 板质量的0.1%。本项目年使用ABS 板材55吨,粉尘产生量为0.055t/a。本项目使用的ABS 板材雕刻似自带一体式的除尘装置,在雕刻机雕刻刀处设有吸尘罩对雕刻粉尘废气进行负压抽吸,参考《广东省工业源挥发性有机物减排量核算方法》(2023年修订版)表3.3-2废气收集集气效率参考值,废气收集方式为单层密闭负压、则废气收集效率可达90%(现以90%计算)。雕刻粉光废气收集后经机器由带一体式的除尘装置(气力集尘装置+布袋除尘器)处理后在车间内以无组织形式排放。根据《排放源统计调查产排污核算方法和系数手册》(公告2021年第24号)2922塑料板、管、型材制造行业系数表,袋式除尘效率可达99%,本项目保守以95%计算,则该粉尘排放量约为0.0025t/a。

本项目 ABS 板材打磨过程会产生塑料粉屑,主要污染物为颗粒物。本项目ABS 板材打磨工序使用角磨机对ABS 板材进行打磨,角磨机就是利用高速旋转的薄片砂轮对ABS 板材进行打磨加工,塑料粉屑主要沉降到打磨工位四周。本项目 ABS 板材打磨工序是对拼接组装后的半成品进行修饰打磨,让产品表面光滑平整,只是针对半成品粗糙位置进行局部的小面积打磨,所以 ABS 板材打磨加工量较少,打磨产生的粉尘量较少。每天定时对沉降到地面的塑料粉屑粉尘进行清理、统一收集后全部交货物资单位回收处理。

⑦中纤板开料、打磨粉尘废气 (无组织排放)

本项目利用数控开料机对中纤板进行切割开料,利用砂纸机对中纤板进行扩磨,开料和打磨工序均会产生木屑粉尘。本项目使用的中纤板厚度为15mm(<35mm),参考《排放源统计调查产排污核算方法和系数手册》(公告2021年第24号)中201木材加工行业系数表,粉尘产污系数取0.243kg/m³(产品),本项目中纤板年耗量50张(约2.2m³),其中边角料产生量为5%,产品约2.1m³,则本项目中纤板开料、打磨粉尘产生量约为0.0005t/a。在数控开料机切削刀处设有吸尘罩对开料粉尘废气进行负压抽吸。参考《广东省工业源挥

发性有机物减排量核算方法》(2023年修订版)表 3.3-2 废气收集集气效率参考值,废气收集方式为单层密闭负压,则废气收集效率可达90%(现以 90%计算)。 开料粉尘废气收集后经布袋除尘器处理后在车间内以无组织形式排放;在打磨工位处设置抽吸口对打磨粉尘废气进行负压抽吸收集,废气收集效率可达90%(现以 90%计算),打磨粉尘废气收集后经设备自带集尘装置(布袋除尘器)处理后在车间内以无组织形式排放。参考《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第24号)2110 木质家具制造行业系数表,袋式除尘效率所达 90%,本项目以 90%计算,则中纤板开料、打磨粉尘排放量为 0.00005t/a。

表 4-7 粉尘废气产生和排放情况一览表

ı								
	产 污工序	污洗物	产生总量 t/a	此	收集县 t/a	が無数数	收集后排	无组织排
7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	行架彻) 土心里 Ua	以来双平	収集里 Ua	处连双举	放量 t/a	放量 t/a
	喷漆后打磨粉尘	颗粒物	0.024	90%	0.0216	90%	0.0022	0.0046
	ABS 板开料	颗粒物	0.055	90%	0.0495	95%	0.0025	0.0080
	ABS 板雕刻	颗粒物	0.055	90%	0.0495	95%	0.0025	0.0080
	中纤板开料、打磨	颗粒物	0.0005	90%	0.00045	90%	0.00005	0.0001
			/y"					0.0206

⑧恶臭气体

AR V

生产过程伴有轻微的气味产生,气味主要来源于吸塑有机废气和喷漆房有机废气,气味可以用臭气浓度表征。吸塑有机废气收集后经"二级活性炭吸附装置"处理后,经20米高排气筒高空排放(排气筒编号:FQ-01》。喷漆房的废气先经水常柜预处理后,再集中经"过滤棉+二级活性炭吸附装置"处理后,经20米高排气筒高空排放(排气筒编号:FQ-02)。因此上述废气经处理后只有少量的恶臭气体在车间无组织排放,项目产生的恶臭气体覆盖范围仅限于生产设备至生产车间边界,对外环境影响较小。通过分析可知,本项目产生的臭气浓度经收集处理后,有组织排放的臭气浓度可满足《恶臭污染物排放标准》(GB14554-93)表2恶臭污染物排放标准值。无组织排放的臭气浓度可满足《恶臭污染物排放标

(GB14554-93)表1恶臭污染物厂界//级新扩改建标准值。 准》

(2) 废气收集和处理情况

①亚克力板激光雕刻有机废气和吸塑有机废气

亚克力板激光雕刻有机废气: 本项目计划在激光雕刻机上方设置抽吸管对激 光雕刻有机废气进行负压加吸收集,激光雕刻机为一体化框架结构设计,激光雕 刻过程机器加盖密封、雕刻完成后再打开框架门。根据《广东省工业源挥发性有 机物减排量核算方法》(2023年修订版)表 3.3-2 废气收集集气效率参考值, 气收集方式为单层密闭负压,VOCs 产生源设置在密闭设备和密闭管道内,则收 集效率取值 90%。

吸塑有机废气: 本项目计划在烤箱上方设置集气罩,由于烤箱和吸塑机为密 闭机体,烤箱加热过程和吸塑机操作过程机器为密闭状态。根据《广东省工业源 挥发性有机物减排量核算方法》(2023年修订版)表 3.3-2 废气收集集气效率参 考值,废气收集方式为单层密闭负压,VOCs产生源设置在密闭设备和密闭管道 内,则收集效率取值90%。

项目1台激光雕刻机以及其中1/26较小的吸塑机产生的废气采用抽吸管收 气污染物污染控制设备》密闭罩负压排风量 Q 集,根据《环保设备设计手册-大 可以按下式进行计算:

Q=Q1+3600 β $V \Sigma A$

其中: Q1-由于设备运转鼓入密闭罩的空气量, m³/h;

是不到的缝隙面积而增加的安全系数,一般取 1.05 以:

过缝隙或孔口的风速,一般取 1-4m/s;

上开启孔口及缝隙的总面积,m²;

表 4-8 废气排风量表

设备名称	数量 (台)	鼓入密闭罩 的空气量 (m³/h)	缝隙或孔口的 风速(m/s)	开启孔口总面 积(m²)	进出口缝 隙面积 (m²)	安全系数	单个设 计风量 (m³/h)	合计风 量 (m³/h)
激光 雕刻	1	0	2.5	$3.14 \times 0.1 \times 0.1 \times 1 \\ = 0.0314$	0	1.1	310.86	310.86
			4 - 1 	64				

机			11/2				
吸塑 机	1	0	2.5 314×0.075×0.0 75×1=0.0177	0	1.1	174.86	174.86
			合计				485.72

2台烤箱以及2台吸塑机产生的废气采用方形上部伞形集气罩,参照《三废 处理工程技术手册》(废气卷)(刘天齐主编)中表 7-18 有关"上部伞形罩"(排气量的计算方法,按照以下公式计算集气风量:Q=1.4phVx 或作、Q----集气罩排风量,m³/s;

AR V

h----污染源(即废气溢出点)至罩口的距离, m;

 V_{x---} 操作口处空气吸入速度,m/s。

表 4-9 废气排风量表

		77 724 4411				
设备名称	┃ 集气罩数 ┃污染物至罩		萬口长	罩口宽/m	控制风速	排风量
以笛石你	量/个	距离/m	/m	₽□処/Ⅲ	m/s	m ³ /h
烤箱	1	702 F)	2.58	0.15	0.5	2751.84
烤箱	1	0.2	1.6	0.15	0.5	1764
吸塑机	2/3/	0.2	1.509	0.5	0.5	4050.144
		合计				8565.98

根据上述计算可知:风机风量为 485.72+8565.98=9051.7m³/h, 考虑风机损耗, 本项目收集激光雕刻有机废气和吸塑有机废气的风机风量取 10000m3/h。

及塑有机废气收集后与激光雕刻有机废气一并经二级活性炭吸附处理,再经 (编号 FQ-01) 引至厂房楼顶排放,排放高度为 20 米

根据《吸附法工业有机废气治理工程技术规范》(HJ2026-2013),单级活性炭 目单级活性炭吸附装置处理效率保守取值为65%,故二级活性炭吸附装置综合处 理效率=1-(1-65%)×(1-65%)=88%,本报告按88%计算。

激光雕刻、吸塑有机废气产排情况详见下表。 是·特别

		表 4-10	激光雕刻	小、吸塑	有机废气	泛污染物产	生、排	放一览表	ŧ		
产			有组织排放								
污	污染	风量	产生浓	产生	产生	排放	排放	排放	产生	产生	
环	物	単	度	速率×	量	浓度	速率	量	速率	量	
节		m ³ /h	mg/m ³	kg/h	t/a	mg/m ³	kg/h	t/a	kg/h	t/a	
激光雕刻吸塑	非甲烷总烃	10000	4.125	0.041	0.099	0.495	0.005	0.012	0.005		

按军工作日300天,每天8小时核算。

②喷漆有机废气和漆雾

本项目设有1个喷底漆房,1个喷面漆房,1个烘干房、1个晾干房,每个房间 均为相对独立密闭的空间。每个喷漆房均配有2支喷枪和1个水帘柜,喷漆有机废 气先经水帘柜预处理后,再与其他有机废气(凋漆有机废气、烘干晾干有机废气) 进行整室负压收集。调漆、喷漆、烘干晾干时,送风机组启动,回风口电动密闭 关闭形成密闭的空间,所有房间, 处呈负压。根据《广东省工业源挥发性有机 (2023年修订版)表 3.3-2 废气收集集气效率参考值,废气 收集方式为单层密闭负压, VOCs产生源设置在密闭车间和密闭管道内,

根据每~房间尺寸要求,底漆房容积为3*6*4=72m3, 6*8*4=192m3, 烘干房容积为 3*2.2*4=26.4m3, 晾干房容积为 6*4*4=96m3。通过 **大**收集措施可知,调漆、喷漆、烘干、晾干房均进行了全**封闭**收集。

按照车间空间体积和 20 次/小时换气次数计算风量,车间所需风量=20*车间 面积*车间高度。根据上述公式,本项目收集喷涂有机废气所需总的风量为 20× (72+192+26.4+96) m³/h=7728m³/h_o

③拼接/组装有机废气

1程

集气罩。本项目使用胶水组装工序均位于客间的车间内,且于废气产生节点上方 设集气罩,车间内的废气经收集后均通过风机引风进入处理设施处理。参考《广 东省工业源挥发性有机物减排量核算方法》(2023年修订版)表 3.3-2 废气收集 集气效率参考值,废气收集方式为单层密闭正压,则收集效率取值80%。

KI KEN OOD 参照《三废处理工程及术手册》(废气卷)(刘天齐主编)中表 7-18 有关" 部伞形罩"排气罩排气量的计算方法,按照以下公式计算集气风量:

 $Q=1.4phV_x$

式中: Q----集气罩排风量, m³/s;

掌口周长,m;

ARLIVA MENTERS

亏染源(即废气溢出点)至罩口的距离, m;

操作口处空气吸入速度, m/s。

表 4-11 废气排风量表

污染源	集气罩数 量/个	污染物至罩口 距离/m	單口长	罩口宽/m	控制风速 m/s	排风量 m³/h
拼接/组装有机废气	1	0.2	18	0.3	0.3	11067.84
		台				11067.84

根据上述计算可知: 收集胶水废气风机风量为 11067.84m3/h。

本项目将胶水产生的有机废气和喷漆废气收集后一起进入"二级活性炭吸附" 装置处理后于20米高排气筒排放。因此收集废气风机风量共为 7728+11067.84=18795.84m³/h。考虑风机风量损耗,则风机风量设置为 20000m³/h。

考《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号) 2110 木质家具制造行业系数表,水帘柜对颗粒物的处理效率为80%;过滤棉对 的的处理效率为80%,则"水帘柜+过滤棉"处理对本项目喷漆废气中颗粒物 的处理效率为 1-[(1-80%)×(1-80%)] =96% 。

参考《广东省工业源挥发性有机物减排量核算方法》(2023年修订版)表 3.3-3 废气治理效率参考值,水帘柜对 TVOC 的处理效率为10%~30%,考虑本项 目均使用水性漆和油性漆,因此本项目水帘柜对 TVOC 的处理效率按20%计算; 二级活性炭吸附对 TVOC 的处理效率按88%计算,则"水帘柜+二级活性炭吸附" 处理对本项目喷漆废气 TVOC 的处理效率为 $[-1, 1, 1, 20\%] \times (1-88\%)$] =90%,因此喷漆废气产生的 TVOC 处理效率为 $[-1, 1, 20\%] \times (1-88\%)$] =90%,因

根据前文分析可知,喷漆废气产生的二甲苯、苯系物以及胶水产生的 TVOC 处理效率按照二级活性炭的处理效率 88%计算。

本项目调漆、喷漆 从于晾干以及胶水有机废气各污染物产排情况见下表:

表 4-12 调漆、喷漆、烘干晾干以及胶水废气污染物产生、排放一览表

जेंद्र		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		有组	组织排	 放			无组织	排放
产污环节	污染物	产生总 量	风量	产生浓度	产生速率	产生量	排放浓度	排放速率	排放量	产生 速率	产生量
///	1	t/a	m ³ /h	mg/m ³	kg/h	t/a	mg/m ³	kg/h	t/a	kg/h	t/a
调漆	TV OC	1.357		24. 96 9	0. 499	1. 1 99	2. 573	0, 05 1	0. 12	0.066	0. 15 9
喷漆	二甲苯	0.064		1. 200	0. 024	0. 0 58	0. 144	0. 00 3	0.00	0.003	0.00
烘干	苯系物	0.302	2000	5. 663	0.173	0. 2 72	0. 680	0. 01	0.03	0. 013	0. 03
、晾干、拼接/组装	颗粒物	0.522	0	9. 788	0. 196	0. 4 70	0. 392	0.00	0.01	0. 022	2.55 2

主: 按年工作日300天,每天8小时核算。

最大工况:每支喷枪最大流量为0.005m³/h,最大工况按照4支喷枪进行核算。 2 支 喷 枪 同 时 喷 水 性 底 漆 时 计 算 出 水 性 底 漆 最 大 用 量 为 : 0.005×2×1.39×1000=13.9kg/h。按照水性底漆调配后VOCs占比为28%,计算出最大工况时水性底漆VOCs产生量为3.892kg/h。

2支喷枪同时喷油性底漆时计算出油性底漆最大用量为:

0.005×2×1.24×1000=12.4kg/h。按照油性底漆调配后VOCs占比为61%, 计算出最 大工况时油性底漆VOCs产生量为7.564kg/h。

废气收集设施集气罩收集风量20000m³/h, 捕集效率90%, "水帘柜+过滤棉+ 二级活性炭吸附"装置的净化效率90%计,则计算出喷漆时VOCs废气的最大排放 速 率 为 (3.892+7.56/ ~×90%×10%=1.031kg/h , 最大排放浓度为 1.031/20000×1000000+\$1.55mg/m³。因此喷漆废气VOCs最大工况时可以满足、广 东省固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1挥发性有 机物排放限值(VOCs排放浓度限值100mg/m³)。

废气达标排放分析

BEIVE

(1) 激光雕刻、吸塑有机废气

本项目亚克力板材激光雕刻过程会有一定量的有机废气及轻微的气味产 生,主要污染因子为非甲烷总烃。本项目计划在激光雕刻机上方设置抽吸管对 激光雕刻有机废气进行负压抽吸收集,激光雕刻机为一体化框架结构设计,激 光雕刻过程机器加盖密封,因此废气收集效率可达90%。

本项目的吸塑工序会有一定量的有机废气及轻微的气味产生,其主要污染 物为非甲烷总烃。本项目ABS板材加热软化工序作业温度控制在 120℃~150℃范 围内,整体温度低于ABS的裂解温度,工序作业期间不会使ABS原料间化学键断力 裂,从而产生裂解反应,作业期间苯乙烯、丙烯腈、1,3 丁二烯、甲苯、乙苯等 特征污染物主要考虑物料中残留单体的挥发,其整体产生量极少。本项工计划 在烤箱上方设置集气罩,在吸塑机上方设置抽风管和集气罩收集吸塑有机废气。 由于烤箱和吸塑机为密闭机体,烤箱加热过程和吸塑机操作过程机器为密闭状 收集效率可达到90%。

收集后的激光雕刻有机废气和吸塑有机废气-级活性炭装置处理后, 经排气筒(FQ-01)引至厂房楼顶排放,排放高度为20米。二级活性炭吸附对该有 机废气的处理效率可达88%,废气经处理后非甲烷总烃、苯乙烯、丙烯腈、1,3丁 二烯、甲苯、乙苯、丙烯酸、丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸甲酯排放能达 排門上排門 到《合成树脂工业污染物排放标准》(GB31572-2015)表5 大气污染物排放限值。

(2) 拼接/组装有机废气

本项目 ABS 板材拼接/组装工序使用胶水会挥发出一定量的有机气体,主要污染物为TVOC。根据上述分析,本项目拼接/组装产生的 TVOC 引入"过滤棉+二级活性炭吸附"处理后,由排气筒(编号 FQ-02)高空排放,设计处理风量为20000m³/h,排气筒高度为20米,废气经处理后 TVOC 排放能达到广东省地方标准《广东省固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)"表1 挥发性有机物排放限值"。因此本项目拼接工序产生的 TVOC 对大气环境的影响较小。

(3) 喷漆有机废气

本项目设有1个喷底漆房,1个喷面漆房,1个烘干房、1个晾干房,每个房间 均为相对独立密闭的空间。每个喷漆房均配有1支喷枪和十个水帘柜,喷漆有机废 气先经水帘柜预处理后,再与其他有机废气(调漆有机废气、烘干晾干有机废气)进行整室负压收集。调漆、喷漆、烘干晾干时、送风机组启动,回风口电动密闭 阀自动开启,采用上送下排风循环。调漆、喷漆以及烘干晾干期间,工作门均需关闭形成密闭的空间,所有房间门口处呈负压,如此废气收集效率可达90%。喷漆废气先经水帘柜预处理后,再与负压收集的其他有机废气(调漆有机废气、烘干和晾干有机废气)一并经"过滤棉+二级活性炭吸附"处理后,由排气筒(编号FQ-02)高空排放,设计处理风量为20000m³/h,排气筒高度为20米,废气经处理后 TVOC以及苯系物排放能达到广东省地方标准《广东省固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)"表1挥发性有机物排放限值",二甲类和颗粒物排放能达到广东省地方标准《大气污染物排放限值》、20B44/27-2001)第二时段二级标准。

(4) 喷漆后打磨粉尘

喷底漆后打磨产生粉尘,打磨使用的砂纸机设备配有吸尘装置,在打磨工位 处设置抽吸口对打磨粉尘废气进行负压抽吸收集,打磨粉尘废气收集后经设备自 带集尘装置(布袋除尘器)处理后在车间内以无组织形式排放。根据源强分析, 本项目喷漆后打磨粉尘排放量较低。可通过加强车间通风换气 ,确保厂界颗粒 物满足广东省地方标准《大气污染物排放化值 (DB44/27-2001) 第二时段颗 粒物无组织排放监控点浓度限值。

(5) ABS 板开料、雕刻、打磨粉尘

本项目 ABS 板开料、雕刻、打磨过程产生粉尘废气,主要污染物为颗粒物。 粉尘影响范围基本上集中在车间内,开料粉尘废气收集后经布袋除尘器理后在 车间内以无组织形式排放,雕刻粉尘废气收集后经机器自带一体式的除尘装置 (气力集尘装置) 布袋除尘器) 处理后在车间内以无组织形式排放,打磨粉尘废 气在车间内以无组织形式排放。建议在生产过程中及时对沉降到地面的塑料粉 尘进行情理,同时加强车间通风换气,确保厂界颗粒物达到广东省地方标准 (污染物排放限值》 (DB44/27-2001) 第二时段无组织排放监控点浓度 限值。

(6) 中纤板开料、打磨粉尘废气

木屑粉尘废气,主要污染物为颗粒 本项目中纤板开料、打磨工序均会产生 物。在数控开料机切削刀处设有吸尘罩对开料粉尘废气进行负压抽吸,开料粉 尘废气收集后经布袋除尘器处理后在车间内以无组织形式排放:在打磨工位处设 置抽吸口对打磨粉尘废气进行发化抽吸收集,打磨粉尘废气收集后经设备自带 集尘装置(布袋除尘器)处理后在车间内以无组织形式排放。根据源强分析,本 项目中纤板开料、打磨粉尘排放量较低,可通过加强车间通风换气,确保厂界 颗粒物满足广东省地方标准《大气污染物排放限值》 第二时段颗粒物无组织排放监控点浓度限值。

污染物排放量核算

表 4-13 大气污染物有组织排放量核算表

序号	排放口编号	污染物	核算排放浓度	核算排放速率	核算年排放量
11-14-14-14-14-14-14-14-14-14-14-14-14-1		177610	(mg/m ³)	(kg/h)	(t/a)
			一般排放口		
1	FQ-01	非甲烷总 烃	0.495	0.005	0.012
2	EO 02	TVOC	2. 573	0.051	0. 123
2	FQ-02	二甲苯	0. 144	0. 003	0. 007
		11-14H))	71		
	-18	, K			
	×///	Y			
	Xa. V				

		.0	30 T- 75 THE	
	苯系物	0.680	0.014	0. 033
	颗粒物	0. 392	0.008	0.019
		非甲烷总烃		0.012
	۲ ٪	TVOC		0. 123
一般排放口合计	1/	二甲苯		0.007
	1	苯系物		0.033
1	7	颗粒物		0.019
20	有	组织排放总计		
.00		非甲烷总烃		0.012
		TVOC		0.123
有组织排放总计		二甲苯		0.007
EN		苯系物	راح.	0.033
Y, K		颗粒物	XX	0.019

表 4-14 大气污染物无组织排放量核算表

			<i>t</i>				TVOC	197	123
			有组	织律放总计			二甲苯	- +++	007
			ZIE.				苯系物	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	033
		L,	<u> X,,,K</u>				颗粒物	0.	019
		1	11/	表 4-	14 ナ	气污 药	验物无组织排放量核算表		
. Y	X	1			主		污染物排放标准		
ARIV AREA OF THE PROPERTY OF T		序号	排放 口 编号	产污环节	污染物	要污染防治措施	标准 名称	浓度限 值 (mg/ m³)	年排放 量 (t/a)
		1	车间 一、 三、 四层	ABS 板材开料、雕刻、打磨、中纤板开料、打磨,喷漆后打磨	颗粒物	JUES.	广东省地方标准《大气 污染物排放 限值》 (DB44/27-2001)第二 时段无组织排放浓度限值	1.0	0.0206
	1,2	2	车间一层	激光雕刻、吸塑	非甲烷总烃	加强车间通风	《 合成树脂工业污染物 排 放 标 准 》 (GB31572-2015)表9厂界大气污染物浓度限值	4.0	0.011
	\$ \\ \!	3	车间三、	调漆、喷漆、烘 干、晾干、拼接	TV OC		广东省《固定污染源挥发性 有机物综合排放标准》 (DB44/2367-2022)表3厂 区内VOCs无组织排放限值	/	0. 159
			四层	/组装	二甲苯		广东省地方标准《大气 污染 物 排 放 限 值 》 (DB44/27-2001)第二 时	1.2	0. 006
					K-XK		72		

						,0		
					自	设无组织排放浓度际	!	
				苯系物	r K		/	0. 030
			V	颗粒	当	一东省地方标准《大气 污染 物 排 放 限 值 》 (DB44/27-2001)第二 时		0. 052
			4000	物	自	没 无 组 织 排 放 浓度 阳 直		
		//	•		<u></u> 尤组织	排放总计	- W-')
		~ KI				非甲烷总烃	0.0	011
		J. 17				TVOC	0.	159
		无组织	排放总计			二甲苯	0.	006
	1	(y'')				苯系物	0.	03
Y	K/					颗粒物	0.0	726
			表	4-15 大	气污染	·物年排放量核算表	·	
AIV		序号	污头	染物		年排放量	(t/a)	
136		1	非甲烷	完总烃	J	0.023	1	
3		2	TV	OC.	1	0.282		
		3		甲苯		0.013		
					// //			

表 4-15 大气污染物年排放量核

序号	污染物	年排放量(t/a)
1	非甲烷总烃	0.023
2	TVOC	0.282
3	二甲苯	0.013
4	苯系物	0.063
5	颗粒物	0.0916

根据项目生产工艺特点和污染源特征,非正常工况主要考虑废气处理设施非情况时外排污染物可能对环境产生的影响。 正常情况时外排污染物可能对环境产生的影响。

非正常工况有机废气污染物事故分析

常排放是指生产过程中开停车(工、炉)、设备检修 正常工况下的污染物排放,以及污染物排放控制措施达不到应有效率等情 下的排放。本次评价废气非正常工况排放主要考虑活性炭装置发生故障,即去 除效率为0的排放。废气非正常工况源强情况见 **表:

表 4-16 非正常工况下废气排放量统计表

> >4+ >6=	污染物名	-16	SK	非正常排放場	况
污染源	称	非正常排放原因 浓度 (mg/m³)		速率(kg/h)	频率及持续时间
		, (()	(g ,)		
	***	地學大概	73		

FQ-01 排气筒	非甲烷总 烃	活性炭吸附装置 发生故障	A.125	0.041	1 次/a,1h/次
FQ-02 排气筒	VOCs	活性炭吸附装置 发生故障	F 24. 969	0. 499	1 次/a,1h/次

由上表可见, 当废气处理设施的处理非正常工况时, 由于污染物产生量较小, FO-01 排气筒排放的非甲烷总烃仍能满足《合成树脂工业污染物排放标准》 (GB31572-2015) 表 5 大气污染物特别排放限值, FQ-02 排气筒排放的 VOCs 仍能满足广东省地方标准《固定污染源挥发性有机物综合排放标准 (DB44/2367-2022) 。

非正常排放的防治措施

生产废气非正常工况排放,企业必须加强废气处理设施的管理、定期 确保废气处理设施正常运行,在废气处理设备停止运行或出现故障时,产 生废气的各工序也必须相应停止操作。为防止废气非化常排放,应采取以下措施 确保废气达标排放:

- ①安排专人负责环保设备的日常维护和管理,每个固定时间检查、汇报情况, 及时发现废气处理设备的隐患,确保废处理系统正常运行;
- ②建立健全的环保管理机构,对环保管理人员和技术人员进行岗位培训,委 托具有专业资质的环境检测单位对项目排放的各类污染物进行定期检测;
- ③应定期维护、检修废气净化装置,以保持废气处理装置的净化能力和净化 容量。

8、大气环境影响分析结论

本项目废气污染物产生量不大,采取收集治理措施和通风措施后, 不会造成环境空气质量的下降,

(二)废水

1、废水产生和排放情况

AT THE OOK THE 本迁建项目产生的废水为喷漆水 产生的废水、喷枪清洗废水以及员工生活 污水。

(1) 喷漆水帘柜产生的废水

本项目两个喷漆房分别配备 2 支喷枪、1 个水帘柜,调漆、喷漆均在喷漆房中 进行。喷漆废气通过水帘柜去除喷漆过程中产生的漆雾(颗粒物), 漆废气过程中会产生废水,该废水经过滤后循环使用,但会定期排放、该废水为浓 度较高的废水,废水主要含有一定量的色度、悬浮物(油漆渣)、有机污染物等。 水帘柜装置尺寸为 4m*2m*2m 和 2.3m*2m*2m, 容积为 25.2m3。水帘柜气液比 7:1,则水帘柜循环水量共为 3.15m3。喷漆水帘柜的水经沉淀后可循环使用,建设 单位拟将其半年更换一次,每次更换量为 3.15t , 则喷漆水帘柜废水产生量为6.3t/a。 废水产生系数按 0.9 核算,则喷漆水帘柜需用水 7.0t/a。喷漆水帘柜废水作为废液定 期收集后交由有相应类别危险废物处理资质的单位处理,后续将纳入危险废物分 析。

(2) 喷枪清洗废水

喷漆共设置 4 支喷枪、其中 2 支用于喷水性漆、2 支用于喷油性漆。喷漆后需 更换油漆颜色才需对喷枪进行清洗,喷油性漆的喷枪使用稀释剂进行清洗,油性喷 枪清洗废液收集后进行调配油漆使用,循环利用不外排。喷水性漆的喷枪使用自来 水进行清洗,喷水性油漆的2支喷枪约每天清洗1次,每次用水共为1000mL,则 全年按照 300 天计算,则清洗喷枪的用水量为 0.3t/a。废水产生系数按 0.9 核算,则 洗产生的废水为 0.27t/a。由于废水量很少,因此将水性质枪清洗废液收集后 为危险废物进行处理。

(3) 生活污水

项目共有员工 15 人,均不在项目内食宿 全年工作 300 天。根据广东《用水 (DB44/T1461.3-2021), 员工生活用水参照国家行政机构办 定额第3部分生活》 公楼无食堂和浴室先进值用水定额 10m 人·a 计算,生活污水按用水量 90%计算,

则项目员工生活用水为 150t/a(0.5t/d), 生活污水为 135t/a(0.45t/d)。

办公生活污水经三级化粪池处理达到广东省地方标准《水污染物排放限值》 (DB44/26-2001)第二时段三级标准后,经市政污水管网排入前锋净水厂,尾水排 入市桥水道。

生活污水主要水污染为了为pH、 COD_{Cr} 、 BOD_5 、SS、氨氮、总磷及总氮等 生活污水污染物产生浓度参考环境保护部环境工程技术评估中心编制《环境影响》 价(社会区域类)。教材(表 5-18),项目生活污水排放系数及新增生活污水源强核算如表 4-17。

2. 污染源汇总

废水污染源源强核 算结果汇总详见表 4-18。

ARIVA NA

〈污染源源强核算结果汇总详见表 4-18。

3、排污口设置情况及监测计划

本项目外排的废水只有生活污水,且排放方式 为间接排放。根据《排污单位自 行监测技术指南 总则》(HJ819-2017)以及《排污许可证申请与核发技术规范 橡 (HJ1122-2020),本项目废水排放口设置情况及废水监测计 ANOVEZ-

表 4-17	本项目废水污染源源强核算结果及相关参数一览表
7X 4-1/	平坝日及八门架城城地位县纪米及相大参数 见农

						表4.17	1/						物排放 排放浓度 (mg/L) 240			
			ı		位	表 4-17	本项目废水	污染源源	强核算	结果及	相关参数	大一览表	RE, LR. SE.		Г	200 T- 127
L	[序	装置	污染	污染 物	核算	一 污染物	物产生 产生浓度	产生	一 治理 	措施 效率	核算	污染 废水排放	物排放 排放浓度	排放	排放时 间/h	TY
生产	生活	发 火 类 池	生活污水	COD _{Cr} BOD ₅ SS 氨氮 总磷 总氮	方法 产污 系数 法	135	200 200 25	量(t/a) 0.041 0.027 0.027 0.027 0.003 0.001 0.005	天室	20 21 30 4 25 14	方法 排污 数 法	135	158 140 24 3 30	0.021 0.019 0.003 0.0004	2400	
						BLIZ I				4			*00/£	-		
			が見	k ·				77								-

表 4-18	废水污染物排放信息表

		表	· 4-18 废水污染物	排放信息表	
序号	排放口编号	污染物种类	排放浓度(mg/L)	日排放量/(kg/d)	年排放量/(t/a)
		COD_{Cr}	240	0.108	0.032
		BOD ₅	158	0.0711	0.021
1	生活污水	SS	140	0.063	0.019
1	WS-01	NH ₃ -N	24	0.0108	0.003
		总磷	3	0.00135	0.0004
	,	总氮	30	0.0135	0,004
	٠.٨.	Y	COD_{Cr}		0:032
	1 th		BOD ₅		0.021
	**************************************		SS	٨'٦	0.019
玉	排放合计		氨氮	1/2)	0.003
14	1		总磷	1	0.0004
			总氮	<i>V</i> >	0.004

表 4-19 废水排放口设置及污染物监测计划一览表

		シロ 排 部	合计						SS				0.019
			וא בדי.					25	夏氮			1/7	0.003
	12	/ 1/						ار	总磷			1	0.0004
. 12				总氮									0.004
				表 4-19 废水排放口设置及污染物监测计划一览表									
ARIVY OF THE PROPERTY OF THE P		排放			AE AE		 行排放标准						
	序号	口 名称 及编 号	排放 地理4		放口类型	放方式	放去向	放城準	监测点位	监测 因子	监测频次	浓度限 值 (mg/L)	标准 名称
					1			间 断		рН		6-9	
				1/2				排 放, 排		COD _C		500	1000
					_		进入	放期	生活	BOD ₅		300	工 省 《水污染
		生活	£113.42 8°	2273	般	间接	前	间	污	SS		400	物排放限值》
	1	排放	N22.97	7310	排放	排	锋净	流 量	水排	NH ₃ -	. /	14/1	(DB44/26-2001)第二时段三级
	₹ ->×		0			放	水	不	放	N			标准
XXX		WS-0 1					广	稳	П	总磷	//	X /	
XXV"								定 且		117			
A STATE OF THE PARTY OF THE PAR								五无规律		总氮		/	
	L												
						, <u>-</u> \	(1)) *	'8				
				_		K		/	o				
				×i	YX								
			X										

但不属外冲击型排放。

4、纳入前锋净水厂处理可行性分析

根据排水许可证可知,本项目所在地属于前锋净水厂纳污范围,因此本项目产生的污水切以接入市政污水管网。本项目排放的废水为生活污水。生活污水经三级化粪池预处理后达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后排入市政污水管网,经市政污水管网排入前锋净水厂进行处理,尾水最终汇入市桥水道。

前锋净水厂位于广州市番禺区沿江路 563 号,建设总规模为 40 万吨/日,首期工程建设规模为 10 万吨/日,二期工程建设规模为 10 万吨/日,三期工程建设规模为 20 万吨/日,占地约 300 亩。其服务区域包括市桥片区、石基片区、沙湾片区和石楼片区,总服务面积 184.9 km²。一、二期采用 UNTIANK 工艺,三期采用 AAO工艺,出水水质要求均达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准和广东省地方标准(DB44/26-2001)一级标准。

本项目全厂总计排水量为 0.45t/d,约占前锋净水厂日处理能力的 0.0001%,对前锋净水厂的日常负荷无影响。前锋净水厂目前正常运行,出水稳定达标排放。

综上,本项目依托前锋净水厂处理是可行的。

5、地表水环境影响评价结论

一本项目水污染控制和水环境影响减缓措施有效,所依托的污水处理设施具备环境可行性,因此本项目地表水环境影响可以接受。

(三)噪声

1、污染源源强分析

项目主要为生产设备产生的噪声。设备运行时产生的噪声值为 65~85dB(A)。

本项目噪声污染源源强核算结果及相关参数见下表。

表 4-20 噪声污染源源强核算结果及相关参数一览表

ı					-				
		声源	噪	声源强 人	降噪:	昔施	噪声	排放值	排放
l	噪声源	│ 产源 │ 类别	核算	噪声值/dB	核算	噪声值	核算	噪声值	时间
l		光 冽	方法	(A)	方法	/dB (A)	方法	/dB (A)	/ h
	数控开料机	频发	17	-7 0~75		25		50	
l	雕刻机(刀具)	频发	0	70~75		25		50	-0
l	吸塑机	频发	2	65~70		25		45	100
l	修边机	频发)	70~75		25		50	
l	吊锣	频发		70~75		25		50_	
l	钉枪 人	频发	类比	70~75	减振、隔	25	类比	- 50	2400
l	激光雕刻机	频发	法	65~75	声等	25	法	50	2400
l	锯机	频发		70~75		25	1/2	50	
l	角磨机	频发		70~75		25	1	50	
ľ	砂纸机	频发		70~75		25		50	
ľ	空压机(活塞	频发		75~85		05		60	
	式)	<i>炒</i> 火及 		13~83		723		00	
ı						,			

注: 上表噪声源强均为设备外 1m。

2、噪声环境影响

根据项目建设内容及《环境影响评价技术导则—声环境》(HJ2.4-2021)的要求,声源位于室内,采用室内声源等效室外声源声功率级计算方法。

(1) 计算某一室内声源靠近围护结构处产生的倍频带声压级或 A 声级:

$$L_{p1} = L_w + 10 \lg \left(\frac{Q}{4\pi r^2} + \frac{4}{R} \right)$$

式中: L_{11} 一靠近开口处(或窗户)室内某倍频带的声压级或 A 声级,dB : L_{w} 一点声源声功率级(A 计权或倍频带),dB ;

指向性因数;通常对无指向性声源,当声源放在房间中心时,Q=1;当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4,当放在三面墙夹角处时,Q=8;

R——房间常数; R=Slpha/(1-lpha),S 为房间内表面面积, m^2 ; lpha为平均吸声系数; r——声源到靠近围护结构某点处的距离,m。

(2) 计算出所有室内声源在围护结构处产生的 i 倍频带叠加声压级:

$$L_{p1i}(T) \neq 10 \lg \left(\sum_{j=1}^{N} 10^{0.1 L_{p1ij}} \right)$$

式中: $L_{p1i}(T)$ ——靠近围护结构处室内 N 个声源 i 倍频带的叠加声压级,dB;

 L_{p1ij} ——室内j声源i倍频带的声压级,dB;

N ——室内声源总数。

(3) 在室内近似为扩散声场时,按下式计算出靠近室外围护结构处的声压级:

$$L_{p2i}(T)=L_{p1i}(T)-(TL_i+6)$$

式中 $(L_{p2i}(T)$ ——靠近围护结构处室外N个声源i倍频带的叠加声压级,dB;

 $L_N(T)$ ——靠近围护结构处室内 N 个声源 i 倍频带的叠加声压级,dB;

 TL_i ——围护结构 i 倍频带的隔声量,dB。

(4)将室外声源的声压级和透过面积换算成等效的室外声源,计算出中心位置位于透声面积(S)处的等效声源的倍频带声功率级。

$$Lw=L_{p2}(T)+10lg(S)$$

式中: Lw ——中心位置位于透声面积(S)处的等效声源的倍频带声功率级,dB:

Lp2(T)——靠近围护结构处室外声源的声压级,dB;

S——透声面积, m^2

(5) 预测点处的预测等效声级(Leq)计算

$$L_{\rm eq} = 10 \lg \left(10^{0.1 L_{\rm eqg}} + 10^{0.1 L_{\rm eqb}} \right)$$

式中: L_{eq} ——预测点的噪声预测值,dB;

 $L_{
m eqg}$ ——建设项目声源在预测点产生的噪声贡献值, ${f dB}$

 L_{eqb} ——预测点的背景噪声值,dB。

通过预测模型计算,项目厂界噪声预测结果与达标分析见下表。

表 4-21 厂界噪声预测结果与达标分析表 单位:dB(A)

噪声源	综合源 强	预测 源强	厂界与声源	电离 (m)	贡献值	昼间标准限 值	达标情况
			东侧厂界	19.2	41	65	达标
生产及辅	02	67 T	南侧厂界	7.15	50	65	达标
助设备	92	67	西侧厂界	19.2	41	65	达标 (
		0,	北侧厂界	7.15	50	65	达标

准》(GB12348,2008)3 类标准。

噪声防治措施及达标分析

目运营期噪声主要为各类设备运行产生的噪声,噪声源强为 65~85dB(A)。 保证本项目厂界噪声排放达标,本环评建议建设单位采取如下措施:

- ①选用低噪声的机械设备,并加强日常管理维护,有异常情况及时检修,确保 其处在良好的运转状态:
- ②优化生产车间内部的布局,在满足要求的前提下,噪声相对较大的仪器设备
- ③提高生产车间密闭性,选用多闭性良好的门、窗(隔声量应不小于 25dB(A)) 加强隔声,降低噪声对外环境影响。

项目营运期间产生的噪声在采取上述措施后,噪声源通过墙体隔声及距离衰 减,项目边界噪声能达到《工业企业厂界环境噪声排放标准》 类标准,本项目产生的噪声对周围的环境影响较小。

4、监测计划

屠《排污单位自行监测技术指南 总则》(HJ819-2017) 则计划见下表:

表 4-22 营运期污染源排放监测计

污染 源名 称	监测点 位	监测指标	监测频次	监测采样和分析方法	执行排放标准
噪声	厂界外	昼夜等效	1 次/季度	《环境监测技	《工业企业厂界环境噪声排放
			1-2KH)	82	

	1米处	声级	术规范》	标准》	(GB12348-2008)3 类
					标准

(四)固体废物

1、固废产生情况

项目生产过程中产生的固体废物包括一般固体废物(边角料和碎屑、布袋除尘器收集到的粉尘)、危险废物、(原料废空桶、喷漆水帘柜产生的废水、漆渣、废过滤棉、废活性炭)及生活垃圾。

(1) 办公生活垃圾

本项目雇佣员工 15 人,年工作 300 天,生活垃圾产生量以 0.5kgd·入计算,则 生活垃圾产生量为 2.25t/a,收集后交由环卫部门统一清运处理。

2) 一般工业固体废物

①边角料和碎屑

本项目产生的边角料和碎屑包括中纤板开料工序产生边角料和碎屑、ABS 板材 开料和裁边工序产生ABS 板边角料和亚克力雕刻工序产生的亚克力边角料和碎屑。由同类型项目生产统计资料可知,中纤板边角料和碎屑产生量占原材料的 5%,中纤板的年用量为 50 张(约4.6 吨),则集产生量约 0.23t/a;ABS 板边角料和碎屑产生量占原材料的 5%,ABS 板的年用量为 55 吨,则ABS 板边角料和碎屑产生量约 2.75t/a;亚克力板边角料和碎屑产生量占原材料的 3%,亚克力板的年用量为 5 吨,则亚克力板边角料和碎屑产生量约 0.15t/a。

本项目产生的边角料和碎屑共为 3.13t/a, 边角料和碎屑为一般工业固体废物, 根据关于发布《固体废物分类与代码目录》的公告(公告 2024 年第 4 号), 废包装材料废物种类为 SW17 可再生类废物, 废物代码为 900-003-S17, 统一收集后交由资源回收公司回收处理。

②布袋除尘器收集到的粉尘

一中纤板开料、打磨经布袋除尘器设备自带吸尘装置收集下来的木材粉尘按粉尘产排情况核算,产生量约0.0004t/a。

ABS 板开料工序布袋除尘器收集到的粉斗量为0.047t/a;雕刻机自带一体式的除尘装置收集到的雕刻粉尘量为0.047t/a, 喷漆后打磨收集的粉尘量为0.018t/a。

则布袋除尘器收集粉尘总量约为0.112t/a。 布袋除尘器收集到的粉尘为一般工业 固体废物,根据关于发布《固体废物分类与代码目录》的公告(公告 2024 年第 4 号), 废包装材料废物种类为 SW17 可再生类废物,废物代码为 900-003-S17,统一收集 后交由资源回收公司回收处理。

(3) 危险废物

①原料废空桶

本项目约产生原料废空桶 660 个,每个空桶约0.5kg,共约0.33t/a。属 家危险废物名录》(2025年版)HW49其他废物,废物代码为900-041.49,收集后 应交由有危险废物处理资质单位进行处理。

②喷漆水帘柜产生的废水

喷漆水帘柜的水半年更换一次,每次产生废水量为3.15吨,每次更换量为3.15t, 则喷漆水帘柜产生的废水产生量为 6.3t/a。属于《国家危险废物名录》(2025 年版) 中编号为 HW12 染料、涂料废物、废物代码为 900-299-12, 收集后应交由有危险废 物处理资质单位进行处理。

(3)喷枪清洗废水

根据前文分析可知,喷水性漆的喷枪使用自来水进行清洗,喷枪清洗产生的废 水为 0.27t/a。属于《国家危险废物名录》(2025 年版)编号为 HW12 染料、涂料废 物,废物代码为900-256.12,收集后应交由有危险废物处理资质单位进行处理

4)漆渣

水帘柜用水去除少量漆渣后循环使用,会产生少量漆渣,年产量约0.6t/a。属于 《国家危险废物名录》(2025年版)中 HW12染料、涂料废物、废物代码为 900-252,12,收集暂存于危废暂存间中,交由有资质的单位收运处理。

⑤废过滤棉

喷漆废气经过滤棉过滤后,会有漆渣附着在过滤 过滤棉需定期更换,类 比同类型项目,含漆渣过滤棉产生量约为 1.5t/a. 属于《国家危险废物名录》(2025 废物代码为900-299-12, 收集后应交由有 年版)中编号为 HW12 染料、涂料废物, 危险废物处理资质单位进行处理。

⑥废活性炭根据工程分析,激光雕刻、吸塑工序、生的有机废气使用二级活性炭吸附装置 捕获的废气量约为 0.087t/a。调漆、喷漆以及烘干晾干工序产生的有机废气使用二 级活性炭吸附装置捕获的废气量约为 1.08t/a。

本项目拟设2套二级活件炭吸附装置,本项目选用的活性炭为蜂窝活性炭,根 据《吸附法工业有机废气治理工程技术规范》(HJ 2026-2013),选用蜂窝状活性 炭时,设施炭层过滤风速宜低于 1.2m/s。活性炭吸附装置设计参数见下表所示。表 4-23 活性炭吸附装置设计参数

_/	X + 25 III	正然次的农业区许多从	K + 1	
光指标	单级活性炭吸附系统参数 (FQ-01)	单级活性炭吸附系统参数 (FQ-02)	设计要求	相符性分析
风量 L	10000m ³ /h	20000m³/h	/	/
活性炭尺 寸(长*宽 *高)	1600mm×1500mm×600mm	2200mm×2200mm×600mm	/	/
空塔流速 (气体流 速=风量/ 过滤面 积)	10000m ³ /h÷ (3600s×1.6m×1.5m) =1.16m/s	20000m ³ /h÷ (3600s×2.2m×2.2m) =1.15m/s	蜂窝状活 性炭< 1.2m/s	相符
停留时间	0.6m÷1.16m/s=0.52s	0.6m÷1.15m/s=0.52s	0.5-2s	相符
吸附剂床厚度	0.6m	0.6m	活住炭层 装填厚度 木低于 300mm	相符
活性炭种类	蜂窝状	蜂窝状	/	/
活性炭填 充量 V	0.6×1.6m×1.5m=1.44m ³	0.6×2.2m×2.2m=2.904m³	/	/
活性炭密 度	0.35t/m ³	0.35t/m ³	/	/
活性炭重 量 G	$0.35t/m^3 \times 1.44m^3 = 0.504t$	0.35t/m ³ ×2.904m ³ =1.016t	/	/
	がが発表が開発を	85		

更换次数 4个月1次 / / /

激光雕刻、吸塑工序废气处理风量为 10000m³/h, 折合 2.78m³/s。单级活性炭尺寸为 1.6m×1.5m×0.6m, 炭层厚度为 0.6m, 停留时间 0.52s, 活性炭填装体积为 1.44m³, 蜂窝状活性炭密度按 0.35g/cm³ 计,则单级活性炭箱一次装填量约 0.504t。本项目采用二级活性炭吸附装置,则活性炭箱一次装填量共为 1.008t。为保证活性炭净化设备运行效果,在活性炭饱和的情况下进行更换。

调漆、喷漆、烘平工序废气处理风量为 20000m³/h, 折合 5.56m³/s。单级活性 炭尺寸为 2.2m×2.2m×0.6m, 炭层厚度为 0.6m, 停留时间 0.52s, 活性炭填装体积为 2.904m³, 蜂窝状活性炭密度按 0.35g/cm³计,则单级活性炭箱一次装填量约 1.016t。本项目采用二级活性炭吸附装置,则活性炭箱一次装填量共为 2.032t。为保证活性 炭净化设备运行效果,在活性炭饱和的情况下进行更换。

根据《广东省工业源挥发性有机物减排量核算方法》(2023 年修订版)表 3.3-2 废气收集集气效率参考值,处理工艺为活性炭吸附法时,建议直接将"活性炭年更换量×活性炭吸附比例"(活性炭年更换量优先以危废转移量为依据,吸附比例建议取值 15%)作为废气处理设施 TVOC 削减量。并进行复核。

处理激光雕刻、吸塑工序废气的活性炭 4 个月更换 1 次,则一年活性炭使用量: 1.008t×3=3.024t/a,活性炭年更换量×活性炭吸附比例=3.024t/a×15%=0.4536t/a。根据复核结果活性炭更换量可吸附废气 0.4536t/a,大于本项目所需削减的有机废气量(0.087t/a),因此该活性炭 1 年更换 3 次可行。废活性炭产生量为3.024+0.087=3.11t/a。

处理调像、喷漆、烘干晾干工序废气的活性炭 2 个月更换 1 次,则一年活性炭 使用量。2.032t×6=12.192t/a,活性炭年更换量×活性炭吸附比例

-12.192t/a×15%=1.83t/a。根据复核结果活性炭更换量可吸附废气 1.83t/a,大于本项目所需削减的有机废气量(1.08t/a),因此该活性炭 1 年更换 6 次可行。废活性炭产生量为 12.192+1.08=13.272t/a。

因此本项目废活性炭的产生量为 3.111+ 3.272=16.383t/a。根据《国家危险废物 名录》(2025 年版),废活性炭属于危险废物(类别为 HW49 其他废物,废物代 码为 900-039-49 烟气、VOCs 治理过程(不包括餐饮行业油烟治理过程)产生的废 活性炭),集中收集后交由有危险废物处理资质的单位处理。

表 4-24 项目固度产生和处置情况一览表

	1	性质		名		来测	É		生量 t/a		处理情	 野况	
	员.	工生活		生活	垃圾	办公	`	2.	25	委托环	[卫部]]回收处	上理
		奶固 体	-	边角料	和碎屑	生产过	1程	3.	.13	给 —Ibt	生巨亦	山 次 派	IN COLUMN
		一般固体 布				布袋除尘器收集到的		112	─ 统一收集后交由资源 公司回收 处理				
			X	原料废	E空桶	生产过	1程	0.	.33		, KI	۲,	
		Y.		表水帘框 水	正产生的废 (废气治	理	6	5.3	- K		二丛丛	<i>D</i> , <i>t</i> ,
	危	险废物	Į	喷枪清洁	先废水	生产过	1程	0.	27	委托有的	直发负, 理	质旳毕	位处
	13			漆剂	查	废气治	理	0	.6	_	垤		
A ^r s	X.			废过	滤棉	废气治	理	1	.5				
				废活的	性炭	废气治	理	16.	383				
NIV					表	4-25 项目	危险废	物汇	总表				
Bla		4- HA		危险		Z X	产生				产	危	污染
'	序	危险废	物	废物	危险废物	产生	工序	形	主要	有害	废	险	防

表 4-25 项目危险废物汇总表

		危险 废物 类别	危险废物 代码	重 t/a	产生 工序 /装 置	形态	主要成分	有害成分	产废周期	危险特性	污染防治措施	
1	原料废空 桶	HW49	900-041-49	0.33	生产	固	废涂 料	有机 溶剂	半年	T	B O	
2	喷漆水帘 柜产生的 废水	HW12	900-299-12	6.3	废气治理	液	有机 废水	有机溶剂	半年	T	托有资	
3	喷枪清洗 废水	HW12	900-256-12	0.27	生产	液	有机 废水	有机 溶剂	年	Т	质单	
14	漆渣	HW12	900-252-12	0.6	废气 治理	固	废涂	有机 溶剂	半年	Т	位 回	
5	废过滤棉	HW12	900-299-12	1.5	废气 治理	固	废涂 料	有机 溶剂	半年	T	收 处	
6	废活性炭	HW49	900-039-49	16.383	废气 治理	固	废活 性炭	有机 废气	4 个 月	T	理	
	2、环境管理要求											
		<i>#</i> //	が開業が	8.	7							

2、环境管理要求

固废暂存间应达到以下要求:

一般工业固废环境管理要求:一般工业固体废物在厂内采用库房或包装工具贮 存,贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。

危险废物: 收集、临时贮存、运输、处置环境管理的具体要求如下:

收集、贮存:应根据危险特性分类收集。建设单位应根据《危险废物贮存污染 控制标准》(GB 18597 2023)(2023-07-01 实施)要求的规范设置危险废物暂存 场所,危险废物收集后分类临时贮存于废物暂存容器内。对于危险废物暂存区域应 严格按照《危险废物贮存污染控制标准》(GB 18597-2023)(2023-07-01 实施) 的相关规定,场所地面需进行耐腐蚀硬化处理,且地基须防渗,地面表面无裂缝; 危险废物堆要防风、防雨、防晒、防渗漏;按照《危险废物识别标志设置技术规范》 (HJ 1276-2022)的要求设置环境保护图形标志。

针对喷漆水帘柜产生的废水等危险废物,为降低渗漏对周边环境的影响,本报 告建议建设单位落实以下措施:

危险废物集中贮存场所的选址应位于地址结构稳定的区域内,贮存设施底部必须高于 地下水最高水位。

为至少 1m 厚黏土层(渗透系数<10⁻⁷ cm/s),或 2mm 堆放地点基础必须防渗, 防渗原 厚高密度聚乙烯,或至少2mm厚的其他人工材料(渗透系数<10-10 cm/s)。危险废物堆放 要防风、防雨、防晒。

危废仓内应按危险废物的种类和特征设置各类收集桶进行贮存,收集桶所用材料应防 渗防腐。收集桶外围应设置 20cm 高的围堰, 在围堰范围内地面和墙体应设置防渗防漏层。

采用双钥匙封闭式管理,24小时都有专人看管。在落实以上措施后,危险废物的存放 可达到《危险废物贮存污染控制标准》(GB18958-2023)的相关要求,对周围环境影

根据《建设项目危险废物环境影响评价指南》 (环保部公告 2017 年第 43 号) 的要求,具体识别见下表。

表 4-26 建设项目危险废物贮存场所(设施)基本情况表

序	危险废物	危险废物	危险废物代 位置	占地面	贮存	贮	贮

				.0	30 T-7			
号	名称	类别	码	1//25	积(m²)	方式	存	存
			. Y	/L.)			能	周
	百业成分		r.K			宏壮励	力	期 半
1	原料废空 桶	HW49	900-041-49			密封贮 存		年年
	喷漆水帘		7.			密封贮		半
2	柜产生的	HW12	900-299-12			存		年(
	废水	0,4						
3	喷枪清洗	HW12	900-256-12			密封贮	, N	(#)
	废水	No		三楼北侧	20	存	50t	年
4	漆渣	WHW12	900-252-12			密封贮	Z,)	半
	A N					(F)		年
5	废过滤棉	HW12	900-299-12			密封坚		半年
//	1)				1	密封贮		4个
6	废活性炭	HW49	900-039-49		17.	存		月月

综上所述,在采取上述措施后,本项目产生的各类固体废物可得到有效处置,不会产生二次污染,对周边环境影响很小。
3、委托利用的环境影响性分析

3、委托利用的环境影响性分析 根据广州市生态环境局广州市危险废物经营许可证单位名录(截止到 2022 年 12 月,查询自广州市生态环境局网站),广州地区可以处置处理废润滑油等其他废 物的单位,处理能力充足,不涉及跨区转移。建设单位直接委托其转运处置即可。

表 4-27 项目危险废物处理单位一览表

序号	企业名称	设施地址	许可证编号	许可证有 效期	核准经营范围、类别
1	市环境保护技术有	白云区钟落潭 镇良田北路 888号(北纬 23°20'46.08", 东经 113°24'23.54")	440100230608	2023年06 月07日至 2026年02 月06日	【收集、贮存、处置(物化处理)】 废有机溶剂与含有机溶剂废物 (HW06 类中的 900-401-06、 900-402-06、900-404-06) 25000 吨/年,废矿物油与含矿物油废物 (HW08 类中的 251-001-08、 251-010-08、900-199~201-08、 900-203~204-08、900-210-08、 900-214-08、900-216~220-08、 900-249-08) 15000 吨/年,油/水、
		×1	排光	89	

				,007	
限公司				烃/水混合物或乳化液(HW09类) 18000吨/年,染料、涂料废物 (HW12类中的 264-009~011-12、 264-013-12、900-250~254-12)5000 吨/年,其他废物(HW49类中的 900-042-49、900-047-49、 900-999-49)8000吨/年,共计 150000吨/年;	一次
广州科城环保科技有限公司	广州开发区科学城光谱东路3号	440100220106	2022年01月06日至2027年01月05日	【收集、贮存、处置(物化处理) 油/水、烃/水混合物或乳化液 (HW09 类) 8000 吨/年,感光材 料废物(HW16 类中的 266-009-16、266-010-16、 398-001-16、873-001-16、 806-001-16、900-019-16)3000 吨 /年,表面处理废物(HW17 类中 的 336-064-17、336-066-17)和废 碱(HW35 类中的 900-356-35) 20000 吨/年,废酸(HW34 类中的 398-005~007-034、 900-301~308-034、900-349-34) 7000 吨/年,废碱(HW35 类中的 261-059-35、900-350~356-035、 900-399-35)3000 吨/年,合计 41000 吨/年。共计 151500 吨/年。	
广州环科环保科技有限公司	黄埔区新龙镇 福山村广州福 山循环经济产 业园内	440101220317	2023年03月08日至2028年03月07日	【收集、贮存、处置(物化处理)】 废有机溶剂与含有机溶剂废物 (HW06 类中的 900-401~ 402-06)、废矿物油与含矿物油废物(HW08 类中的 251-001~ 002-08、900-249-08)、油/水、烃 /水混合物或乳化液(HW09 类中的 900-605~007-09)、感光材料 废物(HW16 类中的 398-001-16、 990-019-16)、表面处理废物 〉(HW17 类中的 336-052-17、 336-054~059-17、336-062~ 064-17、336-066-17)、废酸(HW34 类中的 264-013-34、261-058-34、 313-001-34、398-005~007-34、	
		AN THE PARTY OF TH			

900-300~302-34、900-304~
305-34、900-308-34、900-349-34)、
废碱(HW35 类中的 251-015-35、
261-059-35、193-003-35、
900-350~356-35、900-399-35),
共计 30000 吨/年。【收集、贮存、
利用】其他废物(HW49 类中的
900-401-49,仅限废包装桶)8000
吨/年。合计 78000 吨/年。

经上述暂存措施,本项目产生的固体废弃物不会对周围环境产生直接影响。

(五) 环境风险

1、风险潜势判别

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B,项目涉及的危险物质为乙苯、二甲苯、石脑油、危险废物。主要分布: 化学品仓库、危废间。环境风险物质与临界量的比值计算如下:

A. 当只涉及一种化学物质时,该物质的总数量与其临界量比值,即为 Q。

B. 当存在多种化学物质时,则按式(1)计算物质数量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q1, q2, ..., q1 每种化学物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n 与种化学物质的临界量, t。

当 Q<1 时,项目环境风险潜势为 I;

当 Q≥1 时, 将 Q 值划分为: 1≤Q<10, 10≤Q<100, Q≥100。

危险物质乙苯和二甲苯来源于油性底漆、油性面漆和稀释剂,石脑油来源于水性底漆、油性面漆和稀释剂;乙酸乙酯来源于稀释剂;丁醇来源于油性底漆。

一、喷漆水帘柜废水最大产生量为 6.3t/a。根据前文分析可知,油漆、固化剂以及稀释剂产生的 VOCs 量共为 1.129t/a,按照废气收集效率 90%,水帘柜处理效率 20%计算,则计算出进入水帘柜的 VOCs 量为 1.129×90%×20%=0.203t/a。则估算出水帘柜中 CODcr 产生浓度为: 0.203÷6.3×1000000=32222mg/L。因此可判断喷漆水帘柜废水属于 CODcr 浓度大于 10000mg/L 的有机废液。

	表 4-28 临界量与实际量对比一览表										
序号	危险品名 称	临界量 (吨)	最大储存量 (吨)	该种危险物质 Q值	临界量来源						
1	乙苯	10	0.004	0.0004							
2	二甲苯	10	0.01	0.001							
3	轻芳烃溶 剂石脑油 (石油)	2500	0.015	0.000006	《建设项目环境风险评价 ·技术导则》(HJ 169-2018)						
4	乙酸乙酯	1	0.001	0.0001	附录 B 表 B.1						
5	丁醇	10	0.001	0.0001	PI X D X B.						
6	喷漆水管 柜产生的 废水	10	3.15	0.315	大学的						
ZY	危险	总单元 Q 值 Σ	,	0.3166	17'						

从上表可知,本项目危险单元 Q<1,因此,项目的环境风险潜势为 I 。根据 《危险化学品重大危险源识别》(GB18128-2018) Q值小于1,项目不属于重大 危险源,因此项目有毒有害和易燃易爆危险物质存储量未超过临界量,故项目无需 设置环境风险专项评价。因此本报告对本项目开展环境风险简单分析。

2、环境风险分析

各种化学品及废液若泄漏可能对土壤、地下水和地表水造成一定污染; 若储存 中遇明火不慎引起火灾或爆炸,会造成建筑物损害,对大气环境造成影响,甚至人员伤害。 表 4-29 本项目的环境风险类型及危害途径

▶ 表 4-29 本项目的环境风险类型及危害途径

序	1	Ť.			可能受影响的						
号	危险单元	风险源	主要危险物质	环境风险类型	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
iX	生产车间、 化学品仓	原辅料	乙苯、二甲苯、石 脑油、乙酸乙酯、	泄漏 ///	地表水、地下水						
<u> </u>	库	24, 114 1 1	丁醇	火灾爆炸的二次 污染 物	环境空气						
	危废暂存		喷漆水帘柜产生	泄漏	地表水、地下水						
2	间	危险废物	的废水	火灾爆炸的二次 污染物	环境空气						
3	3、环境风险防范及应急措施										
	92										

3、环境风险防范及应急措施

(1) 火灾事故预防措施

- ①原辅料存放仓库必须设置在干燥、阴凉、通风的地方,必须悬挂消防及明火措施管理制度,并在明显的地方张贴"严禁吸烟"、"严禁火种"等标志牌。
- ②不准携带火柴、打火机或其他火种进入原辅料存放仓库、收发作业区。严格控制火源流动和明火作业。
 - ③仓库建筑物附近,要清除一切易燃物,如树叶、干草和杂物等。
- ④仓库及一切作业场所使用的各种电器设备,都必须是防爆型的,安装要合乎安全要求, 电线不可有破皮、露线及发生短路的现象。
- ⑤防止金属摩擦产生火花引起燃烧和爆炸,在库房内应避免金属容器相互碰 撞。不能在水泥地面上滚动无垫圈的油桶。
- ⑥在空气特别干燥、温度较高的季节,尤应注意检查接地设备,必要时可在作业场地和导静电接地极周围浇水。接地线必须有良好的导电性能、适当的截面积和足够的强度。接地极与接地线应当使用符合标准的。
- ⑦定期对设备进行检修,使设备在生产过程中处于良好的运行状况,把由于设备失灵引发的环境风险减至最低。定期及管道及阀门进行检修,防止因管道破损或阀门失灵等造成泄漏和火灾事故。
- ⑧强化安全生产及环境保护意识的教育,提高职工的素质,加强操作人员的上岗前的培训,进行安全生产、消防、环保、工业卫生等方面的技术培训教育; 定期检查安全消防设施的完好性,确保其处于即用状态,以备在事故发生时,能及时、高效率的发挥作用。

(2) 车间、仓库风险防范措施

(1) 原辅材料按其理化性质分类存放,车间、仓库内配置消防安全装置,如消防 (1) 有为包、盖板、专用吸附用具(废布条、沙子)等围堵物,能及时控制小范围泄漏。

- ②车间、仓库门口设置高于室内地面150mm的墁坡,万一发生包装材料破裂而发生泄漏时,泄漏的物料可被截留在室内。
 - ③地面必须硬化并刷地坪漆。

(3) 危险废物暂存间风险防范措施

本项目建设单位应严格按照相关要求,对生产过程中的危险废物,分类收集用专用容器临时储存,定期检查储存容器是否破裂,确保不发生危险废物泄漏,定期交有资质单位处置;运输过程落实防渗漏措施,则本项目危险废物通过采取相应的风险防范措施,可以将项目的危险废物环境风险水平降到较低,因此本项目的危险废物环境风险水平在可接受的范围内。

(4) 风险事故发生对地表水环境的影响及应急处理措施

项目必须对消防废水设计合理的处置方案。风险事故发生时的废水应急处理措施如下,

- 1)设立相关突发环境事故应急处理组织机构,人员的组成和职责从公司的现状出发,建立健全公司突发环境事故应急组织机构。
 - 2)事故发生后,及时转移、撤离、疏散可能受到危害的人员,并妥善安置。
- 3)发生火灾事故时,在事故发生位置四周用装满沙土的袋子围成围堰拦截消防 废液,并在厂内采取导流方式将消防废液、泡沫等统一收集,消除安全隐患后交由 有资质单位处理。
- 4)项目占地区域地面必须作水泥硬底化防渗处理,发生火灾时,消防废液不会通过地面渗入地下而污染地不水。

(5) 风险事故发生对大气环境的影响及应急处理措施

风险事故发生时的废气应急处理措施如下:

- 1)设立相关交发环境事故应急处理组织机构,人员的组成和职责从公司的现状 出发,建文健全公司突发环境事故应急组织机构。
- 2)事故发生时,救援人员必须佩戴合适的防毒过滤面具,何时穿好工作服,迅 更判明事故当时的风向,可利用风标、旗帜等辨明风向,向上风向撤离。
- 3)事故发生后,要制定污染监测计划,清理处置残余污染物,进行场地清洗和消毒,对可能污染进行监测,根据现场监测结果、确定被转移、疏散群众返回时间,直至正常方可停止监测工作。

(6) 企业加强管理

建议企业加强管理,强化员工安全操作增进,减少化学品、废液的泄漏风险,并在化学品库以及危废间设置截流沟槽系统。一旦化学品、废液等因机械故障或职工操作不当等因素造成泄漏。泄漏液首先进入槽液收集沟槽回收系统,防止出现物料外泄而直接进入外环境。

本项目生产过程中所使用的危险原料主要是油漆、固化剂、稀释剂等,但储存量均较小,这些原材料在运输、储存和使用进程中,出现泄漏的概率很小,但不排除会因自然或人为因素,出现事故造成泄漏。危险原料使用后产生的废液在正常情况下是妥善收集交有资质单位处理,但因技术人员的疏忽或储存容器发生破碎等因素将导致废液的泄漏或事故排放,首先进入设置的截流沟系统、防止出现物料外溢而直接排入外环境。

本项目必须加强原材料、固体废物的管理,特别应对危化品、危废进行严格管理,定期进行检查,并对危化品仓库、危废暂存室地面做好防腐、防渗处理,将泄漏的化学品集中在最小的范围内,控制在项目生产区域内。

(7) 应急措施

本项目须认真落实环境应急相关工作,在厂区内配置相应的消火栓及灭火器; 个人防护用具、应急物资应准备充足;定期维护各类设备,维持良好运行;宣传教育、培训演练,与上级应急机构联动。

4、环境风险分析结论

本项目的危险物质储存量较小,泄漏、火灾等事故发生概率较低,只要通过加强公司管理,做好防范措施等,可以较为有效地最大限度防范风险事故的发生,在项目运营过程中,制订和完善风险防范措施和应急预案,将在项目运营过程中认真落实,环境风险在可控范围内。

(六) 土壤及地下水环境影响分析

(1) 污染途径

本项目主要从事塑料制品制造,项目排放的大气污染物有 TVOC 和颗粒物,不在《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中表 1 和表 2 中规定项目,故本项目不存在有大气沉降影响途径。本项目区域内已

全部进行水泥硬底化,无表露土壤,且使用原料中不含重金属和难降解有机物,不会对周边地下水、土壤造成严重影响。涉水(废水)建构物按一般防渗区及设计要求做好防渗防腐措施后,可有效阻断污染物入渗土壤、地下水环境的途径,无需开展影响预测。

(2) 防控要求

针对项目可能发生的土壤、地下水污染,按照"源头控制、末端防治、污染监控、应急响应"相结合的原则,从污染物的产生、入渗、扩散、应急响应全阶段进行控制,进行污染防治分区,按照要求进行分区防渗处理。为进一步降低项目运行过程对地下水环境的影响,本环评要求建设单位做好以下几点。

- 了定期巡查生产及环境保护设施设备的运行情况,及时发现并处理生产过程中 产品或者废物的扬散、流失和渗漏等问题。
- ②针对液体原料等物质收集、贮存、运输,应 采取措施防止污染物泄漏及扩散;
- ③原辅材料贮存区进行地面防渗,并且做好二次收集设施。在生产运营过程中加强维护,如发生防渗层破损,应及时修补,避免污染物入渗地下水环境。

项目地下水防渗分区表如下

表 4-30 地下水防渗分区表

序号	防渗系统	分区类别	防渗要求
1	重点防渗区	た 危险废物暂存间、化学品储存区	等效黏土防渗层 Mb≥6.0m,K≤1.0×10 7cm/s; 或参照 GB18598 执行
2	一般防渗区	车间	等效黏土防渗层 Mb≥1.5m,K≤1.0×10 ⁷ cm/s; 或参照 GB16889 执行

(七) 生态影响评价

本项目租用的厂房已经建成,且项目用地范围内均已经完成了地面水泥硬底 化,因此本项目的建设不会对周围生态环境产生影响。

(八) 电磁辐射

本项目不属于电磁辐射类项目, 本环产不做电磁辐射评价。

五、环境保护措施监督检查清单

内容 要素		污染物 项目	环境保护措施	执行标准
	激光雕刻、吸 塑有机废气 (FQ-01)	非甲烷总烃、苯乙烯、 丙烯腈、1,3 丁二烯、甲 苯、乙苯、丙烯酸、丙 烯酸甲酯、丙烯酸丁 酯、甲基丙烯酸甲酯 苯乙烯、臭气浓度	二级活性炭吸 附装置处理后 20米高排气筒 排放	《合成树脂工业污染物技术准》(GB31572-201表 5 大气污染物特别技限值 《恶臭污染物排放标准(GB14554-93)表之恶染物排放标准值
		颗粒物	VZ	广东省《大气污染物排》 值》(DB44/27-2001)。 时段排放浓度标准限
大气环境		二甲苯 TVOC、NMHC、苯系 物	经水帘柜预处理后,再经过"过滤棉+二级活性炭"吸附装置处理后 20 米高排气筒排放	《广东省固定污染源挥发有机物综合排放标准 (DB44/2367-2022) " 挥发性有机物排放限值
71·35		美 汽浓度		《恶臭污染物排放标准 (GB14554-93) 表2 恶 染物排放标准值
		颗粒物 二甲苯		广东省《大气污染物排》 值》(DB44/27-2001)) 时段无组织排放限值
表	厂界无组织	NMHC、甲苯	加强车间通风	《合成树脂工业污染物质标准》(GB31572-20表9 厂界大气污染物)
		苯乙烯、臭气浓度	ALIV .	《恶臭污染物排放标》 (GB14554-93)表1等 污染物厂界标准值二级

			,		
			#2\000	(DB44/2367-2022)表 3 厂 区内 VOCs 无组织排放限 值	
地表水环境	生活污水	pH COD _{Cr} BOD ₅ SS NH ₃ -N 总磷 总氮	生活污水经三 级化粪池预处 理后排入市政 污水管网。	广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准	
声环境	生产辅助设备	设备噪声	采用减振、隔 声、消声等措施	《工业企业厂界环境噪声 排放标准》(GB12348-2008) 3.类标准)
电辐 固废 土及下污防措生保措环风防措 其环管要磁射 体物 壤地水染治施 态护施境险范施 他境理求	粉尘交漆 水、漆 化学品,	四收公司回收处理;原料 过滤棉、废活性炭,均交 及危险废物暂存间基础防 2mm 厚高密度聚乙烯, 他区域均进行水泥地面积 通围的生态环境,搞好厂 运输争道做好地面硬化工 证暂存间地面做好两强强理。加强废气治理设施 连位安排专职(或兼职)环 证程验收报告、污染源监 后染防治设施正常运行。	废空桶、喷漆水管 给具有危险废物。 一次是为原体。 一次是为原体。 一次是为原体。 一次是为原体。 一次是为原体。 一次是为原体。 一次是为原体。 一次是,是一个。 一次是一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。	少 lm 厚粘土层(渗透系数 其它人工材料,渗透系数 其它人工材料,渗透系数 是好的生态环境。 好的生态环境。 好所、防渗漏措施,并没置 分类妥善收集后,按照相关操 确保废气治理系统处在良好 负责建立环保档案,包括环 各及运行记录以及其它环境统 每与定体设备的协调管理,使 同时运行及检修;污染防治设	
	J.	为"排"。	8		

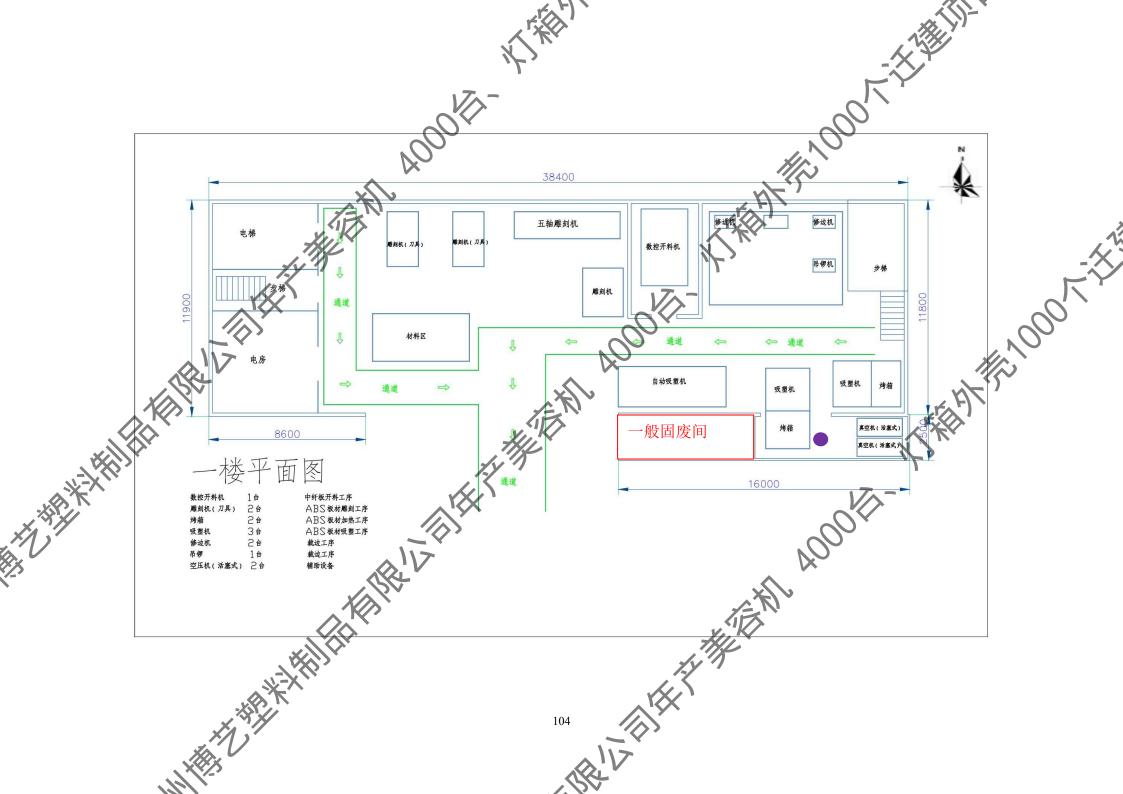
六、结论

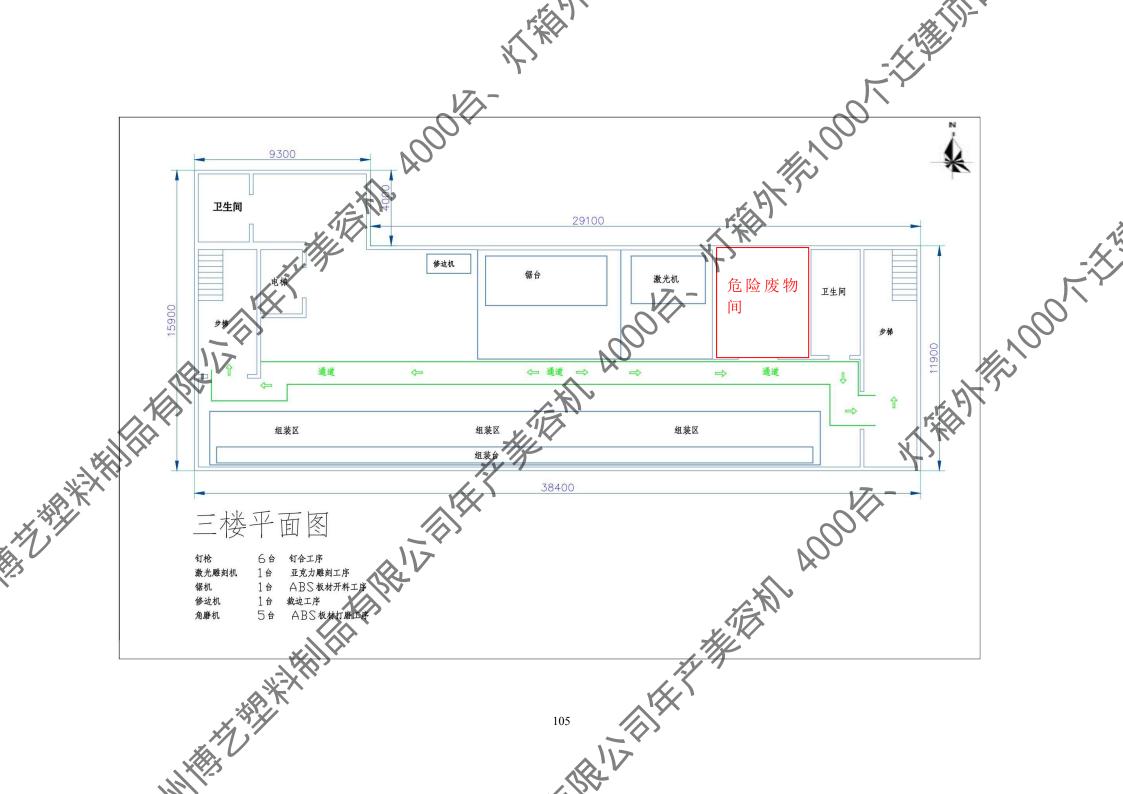
综上所述,广州博艺塑料制品有限公司年产美容机4000 台、灯箱外壳 1000 个 迁建项目符合产业政策要求,本次评价对项目的产排污情况进行计算,对项目运 营过程中产生的废气、废水、固体废物等污染进行了重点分析,并提出了相应的 污染防治措施。在达到本报告所提出的各项要求后,项目的建设将不会对周围环 境产生明显影响,从环境保护角度而言,本项目的建设是可行的。

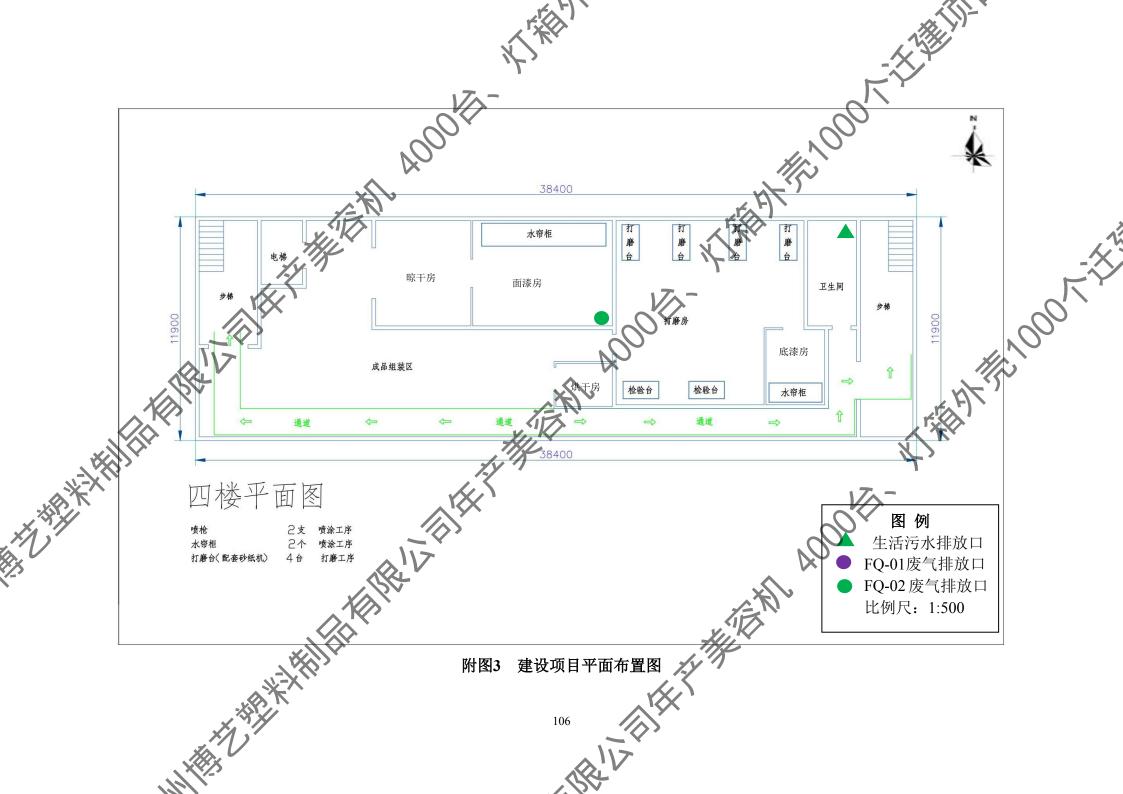
建设单位应认真执行环保"三同时"管理规定,切实落实有关的环保措施;同时 处理措施必须尽快落实,建设单位应自行或委托第三方技术机构,对本项目进行查 验、监测、记载环保设施建设和调试情况,编制验收报告,并验收合格后报送行 政主管部门备案后才能正式投入使用。在项目营运期,建设单位要负责维持环保设 搞好防范措施, 把项目对环境的影响控制在最低的限度。

附表:建设项目污染物排放量汇总表

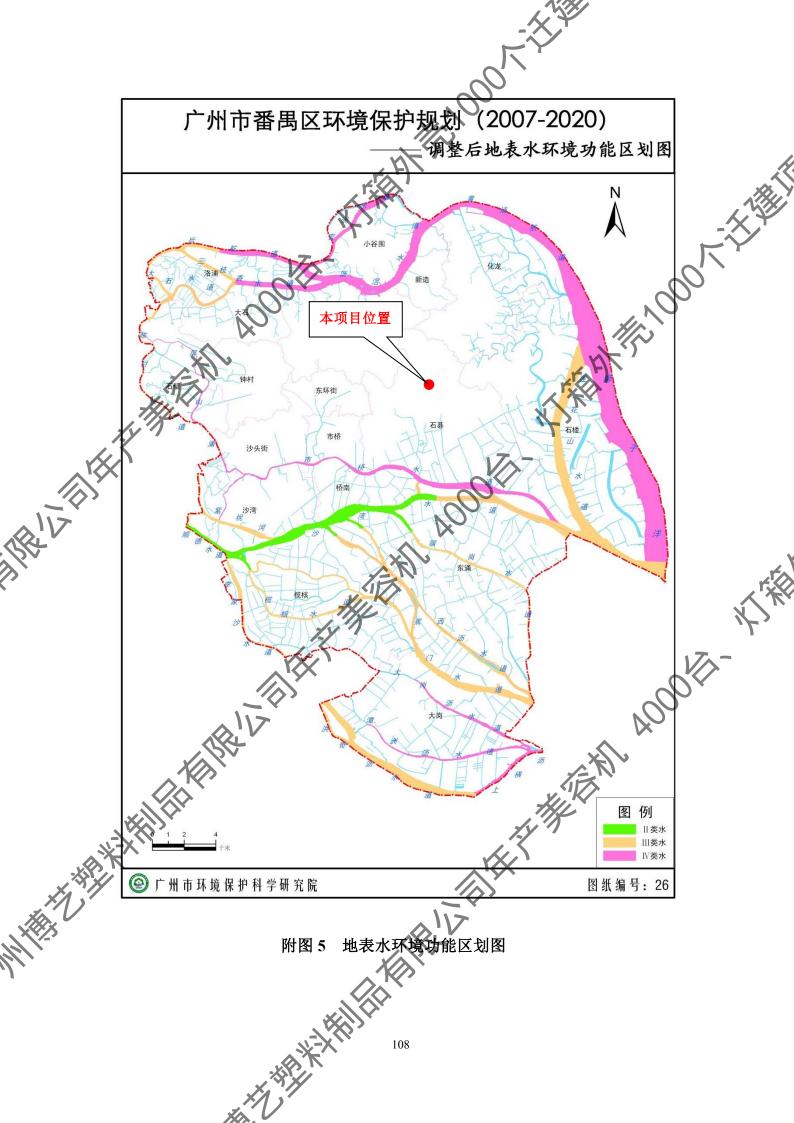
建设项目污染物排放量汇总表

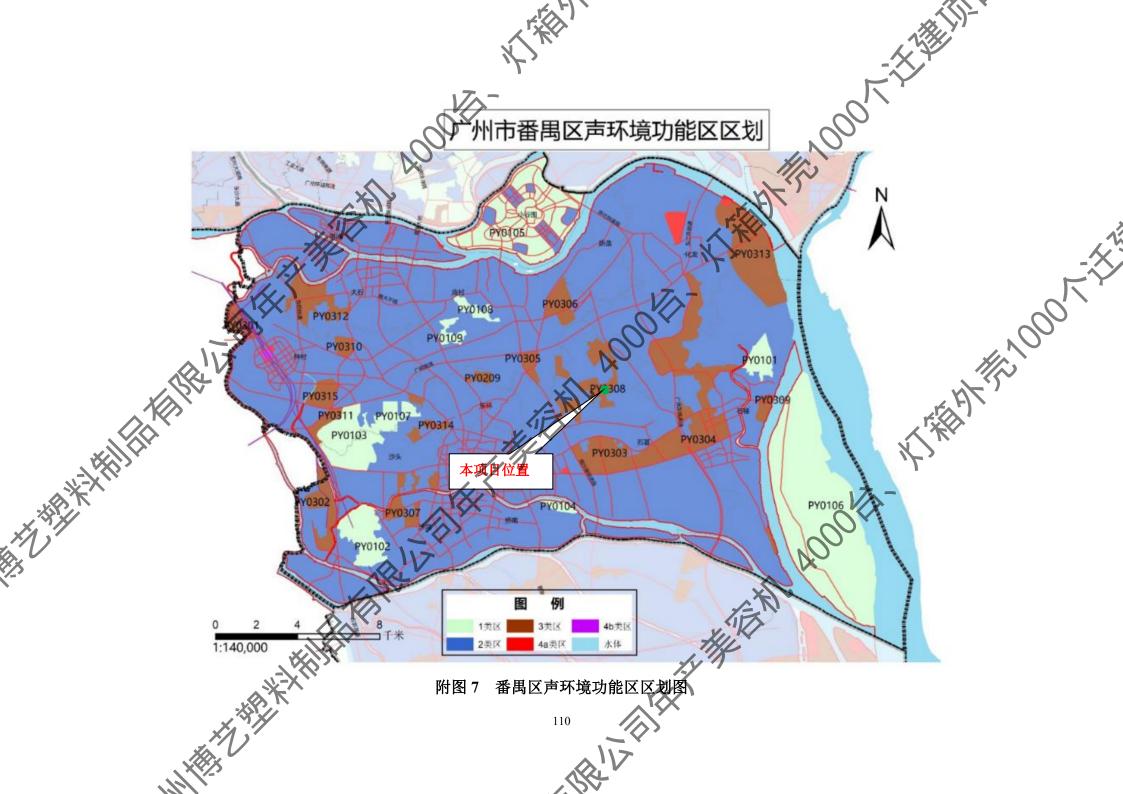

项目 分类	污染物名称	现有工程排放 量(固体废物产 生量)①	现有工程许可排放量②	在建工程排放量 (固体废物产生 量)③	本项目排放量(固体废物产生量)④	以新带老削 减量(新建项 目不填) ⑤	本项目建成后全 厂排放量(固体废 物产生量)⑥	变化量 ⑦
废气	废气量		0	0	7200	0	7200	+7200
	非甲烷总烃	y, K0	0	0	0.023	0	0.023	+0.023
	TVOC	0	0	0	0.282	0	0.282	+0.282
	二甲苯	0	0	0	0.013	0	0.013	+0.013
	苯系物	0	0	0	0.063	0	0.063	+0.063
	颗粒物	0	0	0	0.0916	0	0.0916	+0.0916
废水	废水量	0	0	0	0.0135	0	0.0135	+0.0135
	COD _{Cr}	0	0	0	0.032	0	0.032	+0.032
	BOD_5	0	0	9	0.021	0	0.021	+0.021
	SS	0	0		0.019	0	0.019	+0.019
	NH ₃ -N	0	0	X/// K6	0.003	0	0.003	+0.003
	总磷	0	0 🔨	0	0.0004	0	0.0004	+0.0004
	总氮	0	0	0	0.004	0	0.004	+0.004
一般固废	生活垃圾	0	65	0	2.25	0	2,25	+2.25
	边角料和碎屑	0	0	0	3.13	0 (3.13	+3.13
	布袋除尘器收集到 的粉尘	038	0	0	0.112	XI	0.112	+0.112
危险废物	原料废空桶		0	0	0.33	0	0.33	+0.33
	喷漆水帘柜产生的 废水	0	0	0	6.3	0	6.3	+6.3
	喷枪清洗废水	0	0	0	0.27	0	0.27	+0.27


				KIN THE PARTY OF T			~**	
	漆渣	0	0_	0	0.6	0	0.6	+0.6
	废过滤棉	0		0	1.5	0	01.5	+1.5
	废活性炭	0	000	0	16.383	0	16.383	+16.383
注:⑥=①+③注:污染物产生	E和排放量单位为 t/a。废	气量单位为万丽	3/a。废水量的单	位为万 t/a。			3012-	



A THE TOOK THE THE 新產路 幫 壹鸿百货商场 法と対抗 1:1,063 AND THE PARTY OF T 建设项目四至图

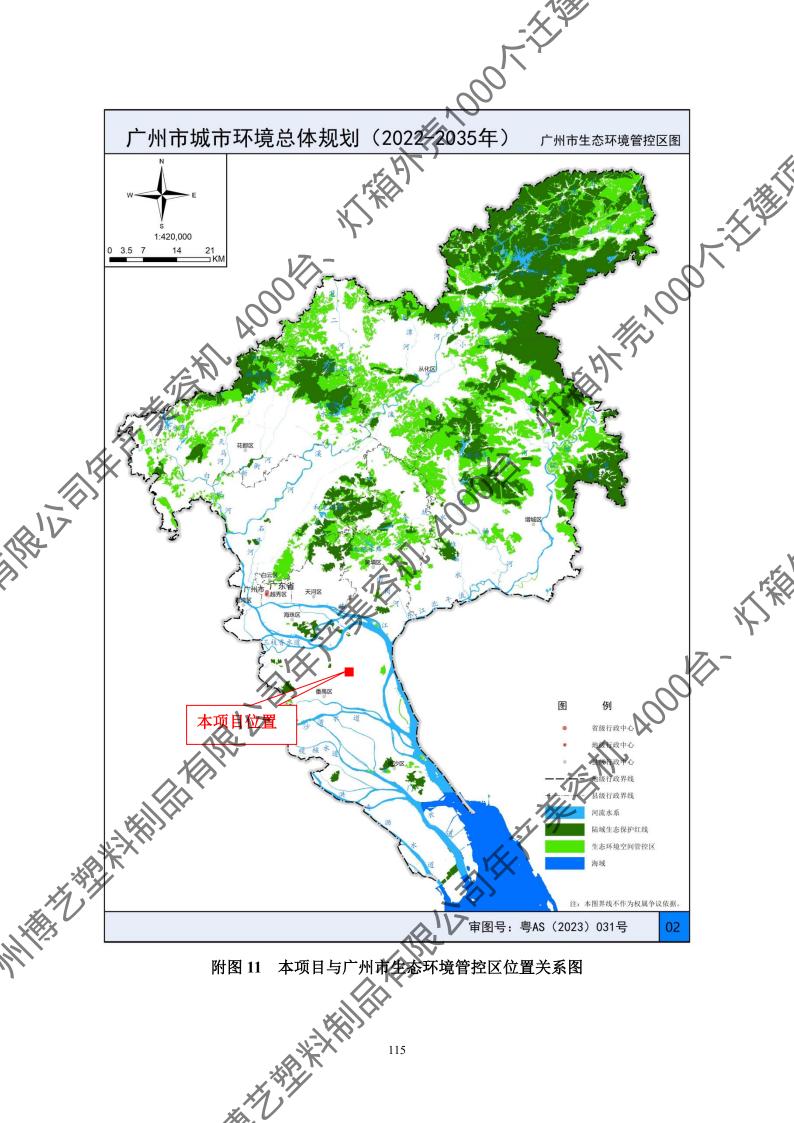

附图 2

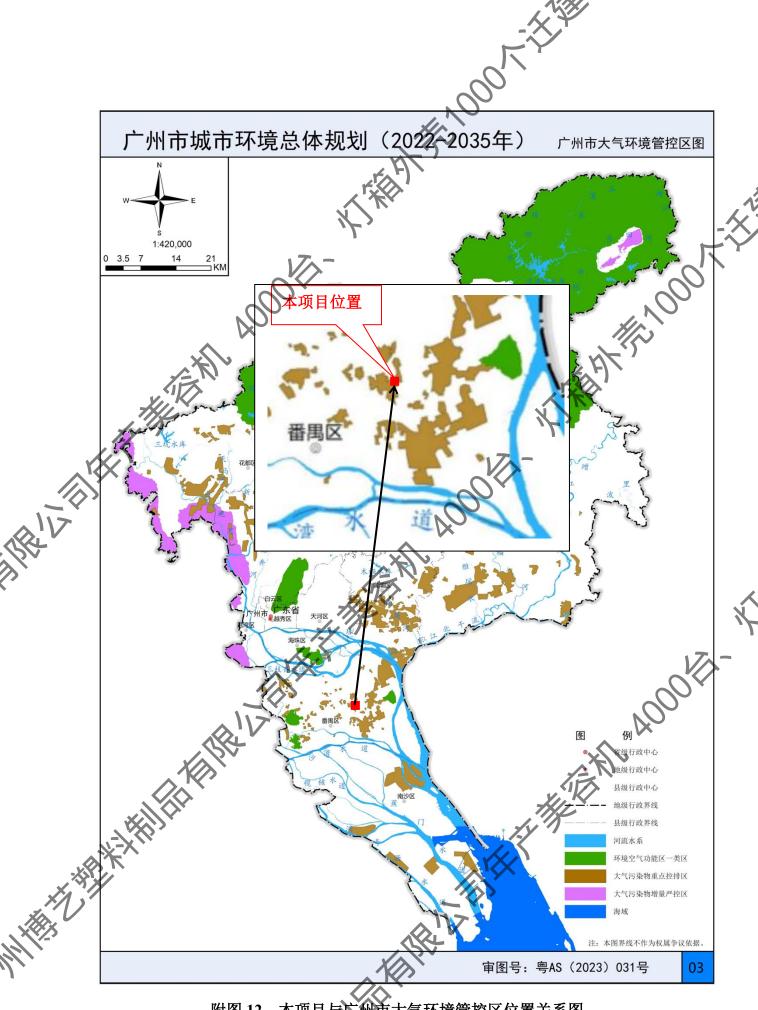


-4

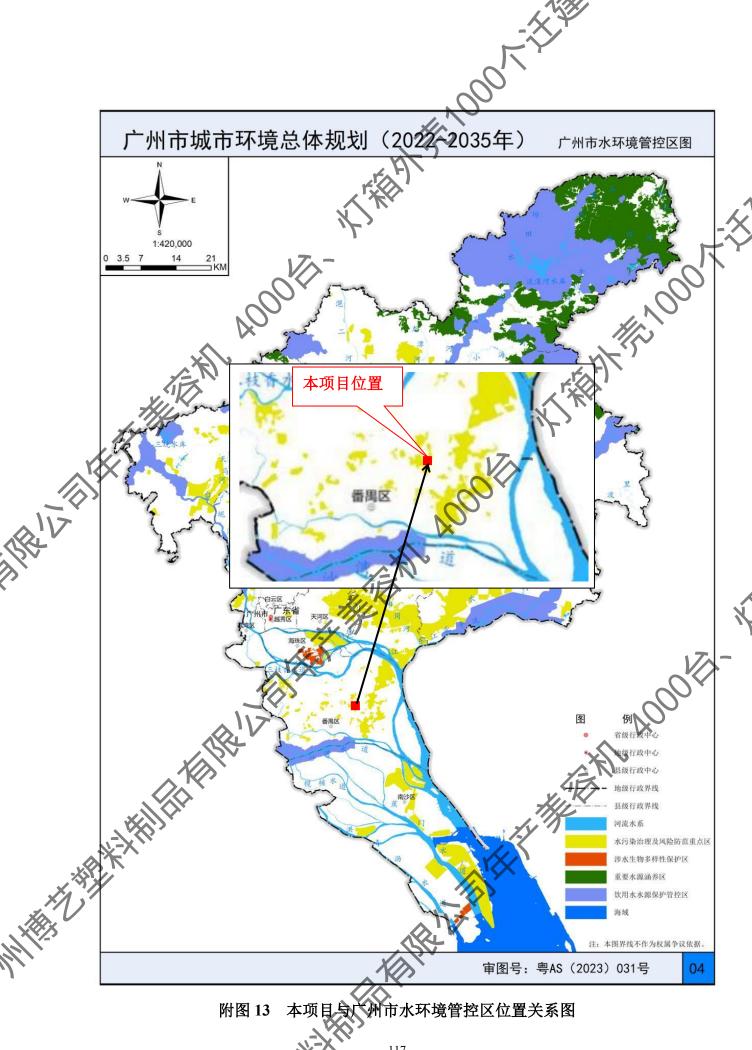
N/N

项目东侧顺宏游乐设备有限公司

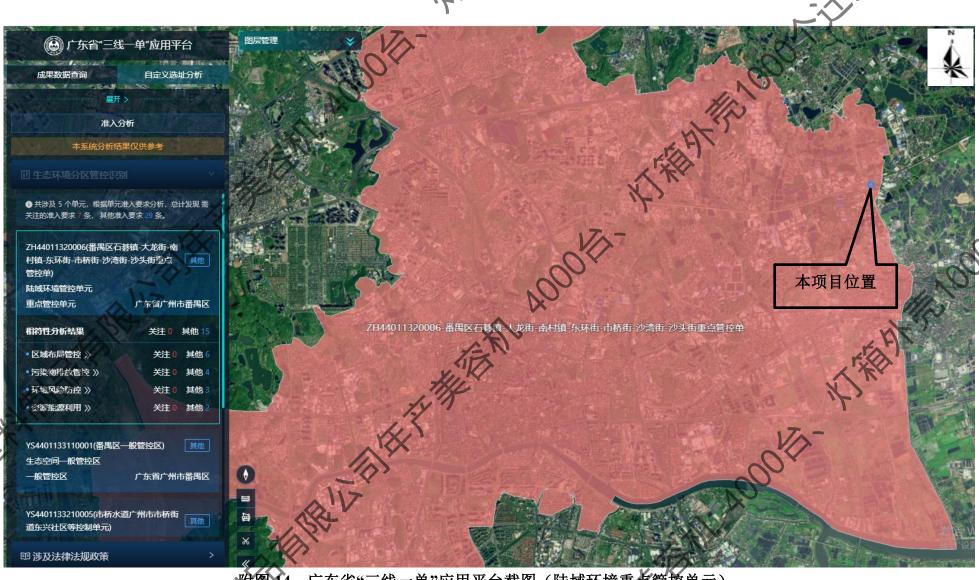

项目南侧闲置厂房



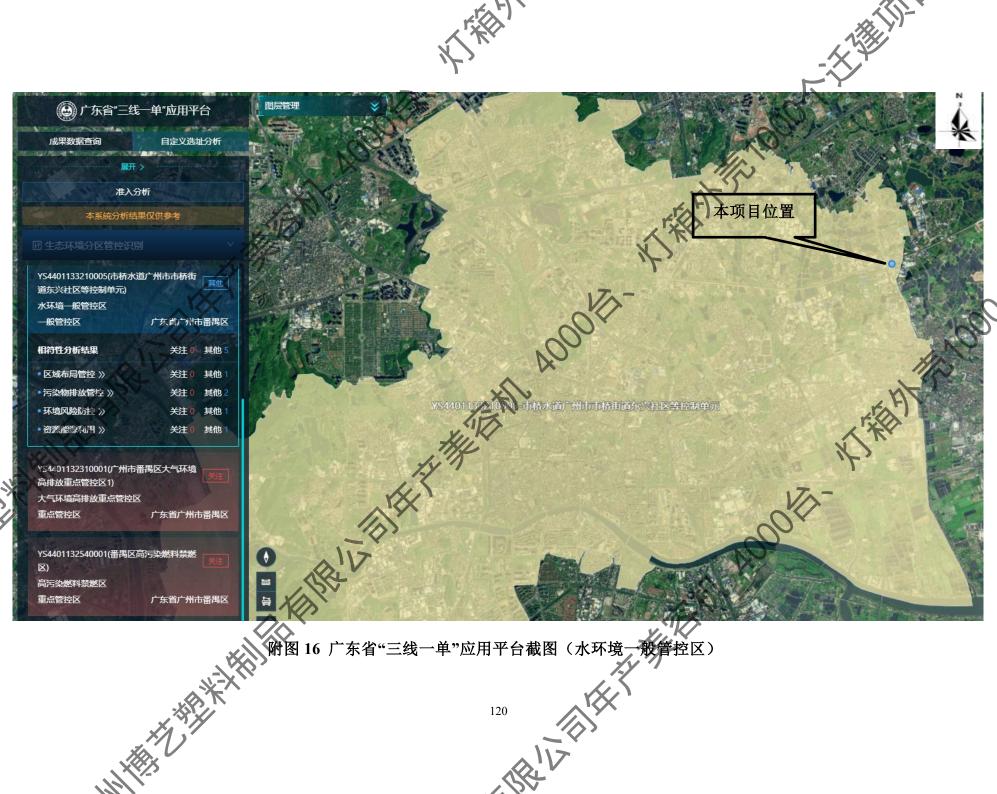
项目西侧厂房



ANTINOON TILLE · A 10 项目用限交换状实景图 水水素 Aggoda 小水素

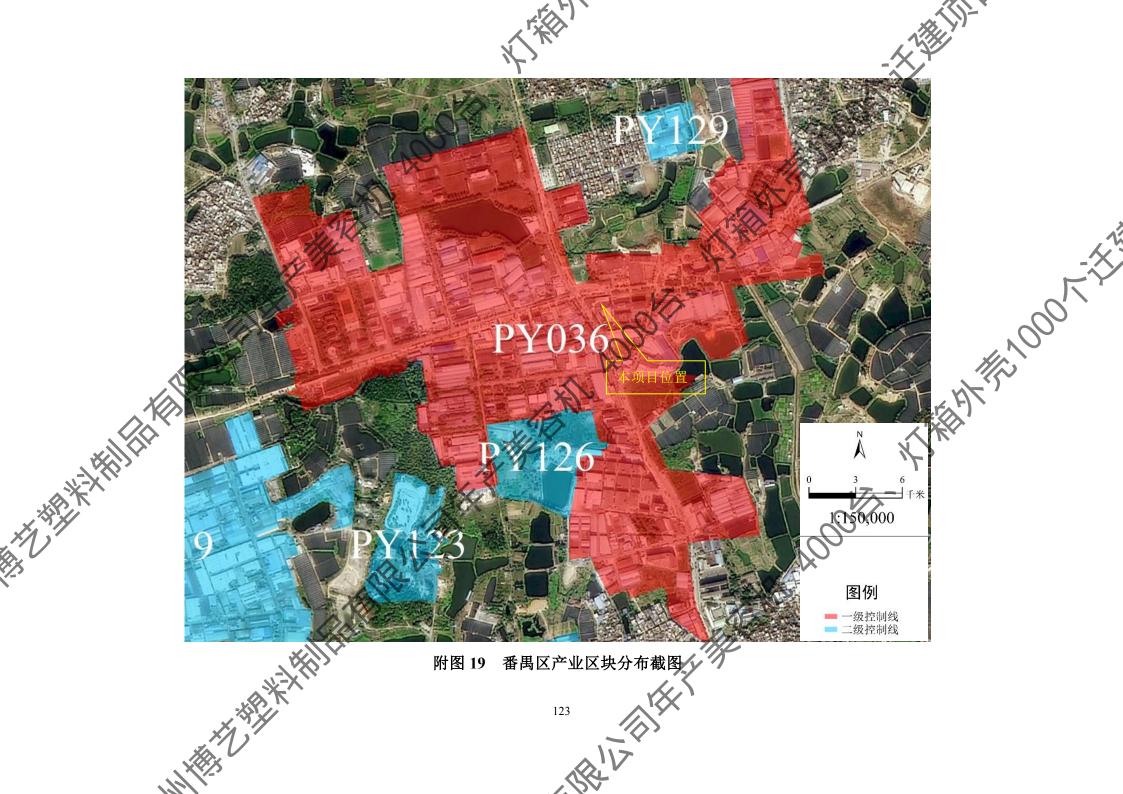


附图 12 大气环境管控区位置关系图 "大"的"大"·



附图 13

近域环境。 广东省"三线一单"应用平台截图(陆域环境重点管控单元)



」(高污, 附图 18 广东省"三线一单"应用平台截图(高污染燃料禁燃区)

